11.函數(shù)f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若函y=f (x)十f(2-x)-b,b∈R恰4個零,則b的取值范圍是(  )
A.($\frac{7}{4}$,+∞)B.(一∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

分析 由題意得g(x)=f (x)十f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,作函數(shù)g(x)的圖象,從而結(jié)合圖象可求得.

解答 解:∵f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,
∴f(2-x)=$\left\{\begin{array}{l}{2-|2-x|,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,
設(shè)g(x)=f (x)十f(2-x)
=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,
作函數(shù)g(x)的圖象如下,
,
g(-$\frac{1}{2}$)=$\frac{1}{4}$-$\frac{1}{2}$+2=$\frac{7}{4}$,g($\frac{5}{2}$)=$(\frac{5}{2})^{2}$-5×$\frac{5}{2}$+8=$\frac{7}{4}$;
結(jié)合圖象可知,
b的取值范圍是($\frac{7}{4}$,2);
故選:D.

點評 本題考查了函數(shù)的化簡與分段函數(shù)的應(yīng)用,同時考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),他們在培訓(xùn)期間8次模擬考試的成績?nèi)缦拢?br />甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學(xué)生成績的莖葉圖,指出學(xué)生甲成績的中位數(shù)和學(xué)生乙成績的眾數(shù);
(2)求學(xué)生乙成績的平均數(shù)和方差;
(3)從甲同學(xué)超過80分的6個成績中任取兩個,求這兩個成績中至少有一個超過90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點A(-1,0),F(xiàn)(1,0),動點P滿足$\overrightarrow{AP}$•$\overrightarrow{AF}$=2|$\overrightarrow{FP}$|.
(1)求動點P的軌跡C的方程;
(2)直線l過F交曲線C于A、B兩點,若線段AB的長為6,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列,且${a_3}=\frac{1}{8},{a_2}=4{a_7}$
(1)求{an}的通項公式
(2)若${b_n}={a_n}{a_{n+1}}({n∈{N^+}})$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x>0時,$f(x)={x^2}+\frac{2}{x}$,則x<0時,f(x)=x2-$\frac{2}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列命題:
①若給定命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,均有x2+x-1≥0;
②若p∧q為假命題,則p,q均為假命題;
③命題“若x2-3x+2=0,則x=2”的否命題為“若 x2-3x+2=0,則x≠2,
其中正確的命題序號是( 。
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.記函數(shù)f(x)=$\sqrt{x-1}+\sqrt{5-x}$的定義域為集合M,函數(shù)g(x)=x2-2x+4的值域為集合N,求M∪N和M∩(∁RN).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)f(x)是定義域為R,最小正周期為$\frac{3π}{2}$的函數(shù),若f(x)=$\left\{\begin{array}{l}cosx,({-\frac{π}{2}≤x<0})\\ sinx,({0≤x<π})\end{array}$,則$f({-\frac{14π}{3}})$的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=sin(2x+ϕ)-\sqrt{3}cos(2x+ϕ)(0<ϕ<π)$是R上的偶函數(shù),則ϕ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案