16.直線2x-3y+1=0與圓(x-1)2+(y-1)2=4相交于A、B兩點,則|AB|=4.

分析 由圓C的方程,找出圓心的坐標(biāo)及半徑r,利用點到直線的距離公式求出圓心到直線l的距離d,根據(jù)垂徑定理及勾股定理即可求出|AB|的長.

解答 解:由圓(x-1)2+(y-1)2=4,得到圓心(1,1),半徑r=2,
∴圓心到直線l:2x-3y+1=0的距離d=$\frac{0}{\sqrt{4+9}}$=0,即AB是直徑,
則|AB|=4.
故答案為:4.

點評 此題考查了直線與圓相交的性質(zhì),涉及的知識有:圓的標(biāo)準方程,點到直線的距離公式,垂徑定理,以及勾股定理,當(dāng)直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實數(shù)m的取值使函數(shù)f(x)在定義域上有兩個極值點,則叫做函數(shù)f(x)具有“凹凸趨向性”,已知f′(x)是函數(shù)f(x)的導(dǎo)數(shù),且f′(x)=$\frac{m}{x}$-2lnx,當(dāng)函數(shù)f(x)具有“凹凸趨向性”時,m的取值范圍是( 。
A.(-$\frac{2}{e}$,+∞)B.(-$\frac{2}{e}$,0)C.(-∞,-$\frac{2}{e}$)D.(-$\frac{2}{e}$,-$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2(a∈R),g(x)=2lnx.
(1)討論函數(shù)F(x)=f(x)-g(x)的單調(diào)性;
(2)若方程f(x)=g(x)在區(qū)間[${\sqrt{2}$,e]上有兩個不等實數(shù)根,求實數(shù)a的取值范圍.
(可能用到的參考數(shù)據(jù):ln2≈0.7,$\frac{1}{e^2}$≈0.135).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若數(shù)列{an}是等差數(shù)列,首項a1<0,a203+a204>0,a203a204<0,則使前n項和Sn<0的最大自然數(shù)n是(  )
A.405B.404C.407D.406

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{2}{3}$,a=$\sqrt{5}$,c=2,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,正三棱錐A-BCD中,已知AB=BC=$\sqrt{6}$.
(1)求證:AD⊥BC;
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overline{a}$=(-1,2),$\overrightarrow$=(m2-2,2m),若$\overrightarrow{a}$與$\overrightarrow$共線且方向相反,則m的值為( 。
A.1 或-2B.2C.-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,則該顧客在3次抽獎中至多有兩次獲得一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2-t),且x∈[0,1]時,f(x)=-ln(x2+e),則f(2017)的值等于( 。
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

同步練習(xí)冊答案