【題目】某工廠連續(xù)6天對新研發(fā)的產品按事先擬定的價格進行試銷,得到一組數(shù)據(jù)如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

試銷價

9

11

10

12

13

14

產品銷量

40

32

29

35

44

(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關于的線性回歸方程,并預測4月6日的產品銷售量;

(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.

參考公式:

其中 ,

【答案】12

【解析】

(1)由題意分別求出的值,然后求出即可得到回歸直線方程,繼而得到產品銷售量的值

(2)運用枚舉法列出可能出現(xiàn)的情況,求出兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率

(1)由題設可得,

.

所以,

則回歸直線方程為,

.

(2)從6天中隨機取2天的所有可能結果為:

,,,,,,,共15種,

其中相鄰兩天的結果為,,,共5種,

所以選取的兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】.

1)若,求數(shù)列的通項公式;

2)若,問:是否存在實數(shù)c使得對所有成立?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。

(I)點E在線段PB上,滿足CE//平面PAD,求的值。

(II)已知AC與BD的交點為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是邊長為6的等邊三角形,點DE分別是邊AB、AC上的點,且滿足,如圖,將沿DE折成四棱錐,且有平面平面BCED

求證:平面BCED;

的中點為M,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在斜三棱柱中,AB=1,AC=2,ABAC,底面ABC.

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足),),則下列說法中錯誤的是(

A.,則數(shù)列為遞增數(shù)列

B.若數(shù)列為遞增數(shù)列,則

C.存在實數(shù),使數(shù)列為常數(shù)數(shù)列

D.存在實數(shù),使恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求的最大值;

2)若對,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為,若曲線與曲線關于直線對稱.

1)求曲線的直角坐標方程;

2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,圓 軸交于點、 為橢圓上的動點, 面積最大值為. 

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點、,求的取值范圍.

查看答案和解析>>

同步練習冊答案