【題目】如圖,已知是邊長(zhǎng)為6的等邊三角形,點(diǎn)D、E分別是邊ABAC上的點(diǎn),且滿足,如圖,將沿DE折成四棱錐,且有平面平面BCED

求證:平面BCED;

的中點(diǎn)為M,求二面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】

由余弦定理得,由色股定理得,由此能證明平面BCED

平面BCED,且,以D為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.

證明:依題意,,

中,由余弦定理得,

,,,

平面平面BCDE

平面BCED

平面BCED,且,

D為原點(diǎn)建立空間直角坐標(biāo)系,

0,,,0,,,

,0,,

設(shè)平面MDC的法向量y,

,取,得,

設(shè)平面的一個(gè)法向量y,,

,取,得

設(shè)二面角的平面角為,

二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn),Q為平面上的動(dòng)點(diǎn),且,線段的中垂線與線段交于點(diǎn)P

的值,并求動(dòng)點(diǎn)P的軌跡E的方程;

若直線l與曲線E相交于A,B兩點(diǎn),且存在點(diǎn)其中AB,D不共線,使得,證明:直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),IOJ的邊IJ上的中線長(zhǎng)為

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮等比數(shù)列的首項(xiàng)、公比均為.

1)試求無(wú)窮等比子數(shù)列各項(xiàng)的和;

2)是否存在數(shù)列的一個(gè)無(wú)窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出所有滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:若對(duì)任意的x(0,2]都成立,則[0,2]上是增函數(shù),下列函數(shù)中能說(shuō)明命題p為假命題的有( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)作動(dòng)直線交橢圓兩點(diǎn),為平面上一點(diǎn),直線的斜率分別為,且滿足,問(wèn)點(diǎn)是否在某定直線上運(yùn)動(dòng),若存在,求出該直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠連續(xù)6天對(duì)新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

試銷價(jià)

9

11

10

12

13

14

產(chǎn)品銷量

40

32

29

35

44

(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測(cè)4月6日的產(chǎn)品銷售量;

(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.

參考公式:

其中 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高血壓高血糖和高血脂統(tǒng)稱三高”.如圖是西南某地區(qū)從2010年至2016年患三高人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)求出相關(guān)系數(shù)(精確到0.01)并加以說(shuō)明;

2)建立關(guān)于的回歸方程,預(yù)測(cè)2018年該地區(qū)患三高的人數(shù).

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),

回歸方程 中:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案