已知P(-4,-4),點Q是離心率為且焦點在x軸上的橢圓x2+my2=16上的動點,M是線段PQ上的點,且滿足=,則動點M的軌跡方程是   
【答案】分析:先確定橢圓的方程,再確定M,Q坐標之間的關系,利用橢圓的方程,即可得出結論.
解答:解:∵橢圓焦點在x軸上的x2+my2=16的離心率為,

∴m=2
∴橢圓的方程為
設M(x,y),Q(a,b),則
=,P(-4,-4),

∴a=4x+12,b=4y+12


∴(x+3)2+2(y+3)2=1.
故答案為:(x+3)2+2(y+3)2=1
點評:本題考查軌跡方程,考查橢圓方程,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知P(-4,-4),Q是橢圓x2+2y2=16上的動點,M是線段PQ上的點,且滿足PM=
1
3
MQ,則動點M的軌跡方程是( 。
A、(x-3)2+2(y-3)2=1
B、(x+3)2+2(y+3)2=1
C、(x+1)2+2(y+1)2=9
D、(x-1)2+2(y-1)2=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•衢州一模)已知P(-4,-4),點Q是離心率為
2
2
且焦點在x軸上的橢圓x2+my2=16上的動點,M是線段PQ上的點,且滿足
PM
=
1
3
MQ
,則動點M的軌跡方程是
(x+3)2+2(y+3)2=1
(x+3)2+2(y+3)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
(2)(4)
(2)(4)

(1)已知p:
1
x+1
>0,則¬p:
1
x+1
≤0
(2)不存在實數(shù)x∈R,使sinx+cosx=
π
2
成立
(3)命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0
(4)若p或q為假命題,則p,q均為假命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(4,4)為圓C:內(nèi)一定點,圓周上有兩個動點

A,B恒有

   (1)求弦AB中點M的軌跡方程

   (2)以AP和PB為鄰邊作矩形AQBP,求點Q軌跡方程

   (3)若x,y滿足Q點軌跡方程,求的最值

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省贛州市十二縣(市)高二(下)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知P為橢圓(a>b>0)上一點,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,若使△PF1F2為直角三角形的點P有且只有4個,則橢圓離心率的取值范圍是( )
A.(0,
B.(,1)
C.(1,
D.(,+∞)

查看答案和解析>>

同步練習冊答案