【題目】已知為數(shù)列的前項(xiàng)和,且是與的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若為整數(shù),,求數(shù)列的前項(xiàng)和.
【答案】(1)或;(2).
【解析】
試題分析:(1)由于,所以數(shù)列為等差數(shù)列,根據(jù)等比中項(xiàng)的性質(zhì)列出方程,求得公差或,由此求得的兩個(gè)通項(xiàng)公式;(2)由于為整數(shù),所以,化簡(jiǎn),故用裂項(xiàng)求和法求得前項(xiàng)和為.
試題解析:
(1)∵,
∴,∴為等差數(shù)列,.........................1分
設(shè)的公差為,∵是與的等比中項(xiàng),∴........................2分
∴,∴,∴或................4分
當(dāng)時(shí),...........................5分
當(dāng)時(shí),.....................6分
(2)若為整數(shù),則,
∴,∴....................8分
∴,.....................10分
∴..............12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長(zhǎng)為.點(diǎn)為圓上異于的任意一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn).
(1)求圓的方程;
(2)求證: 為定值;
(3)當(dāng)取得最大值時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為菱形,底面,是上的一點(diǎn),.
(1)證明:平面;
(2)設(shè)二面角為,求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且是面積為的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)作直線交橢圓于兩點(diǎn),使,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件需另投入成本萬(wàn)元,當(dāng)年產(chǎn)量不足80千件時(shí)(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí)(萬(wàn)元),每千件產(chǎn)品的售價(jià)為50萬(wàn)元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤(rùn)萬(wàn)元關(guān)于(千件)的函數(shù)關(guān)系;
(2)當(dāng)年產(chǎn)量為多少千件時(shí)該廠當(dāng)年的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1:的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2:相切于點(diǎn)Q.
(Ⅰ)當(dāng)直線PQ的方程為時(shí),求 拋物線C1的方程;
(Ⅱ)當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及曲線在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com