【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對(duì)于解決民眾出行“最后一公里”的問(wèn)題特別見(jiàn)效,由于停取方便、租用價(jià)格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測(cè)算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤(rùn)=總收益-總成本.

(1)試將自行車廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】(1) (2)見(jiàn)解析.

【解析】

(1)先計(jì)算總成本為元,再利用總收益減去成本得到利潤(rùn).

(2)計(jì)算分段函數(shù)每段的最大值,再確定整個(gè)函數(shù)的最大值.

(1)依題設(shè)知,總成本為元,則

(2)當(dāng)時(shí),,故當(dāng)時(shí),;

當(dāng)時(shí),是減函數(shù),故 .

所以當(dāng)月產(chǎn)量為300輛時(shí),自行車廠的利潤(rùn)最大,最大利潤(rùn)為25 000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分別表示的三個(gè)內(nèi)角所對(duì)邊的邊長(zhǎng),表示的外接圓半徑.

1,求的長(zhǎng);

2)在中,若是鈍角,求證:;

3)給定三個(gè)正實(shí)數(shù),其中,問(wèn)滿足怎樣的關(guān)系時(shí),以為邊長(zhǎng),為外接圓半徑的不存在,存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過(guò)點(diǎn),焦點(diǎn),圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P

①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);

②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題pq ≤0.

(1)pq的充分而不必要條件,求實(shí)數(shù)m的取值范圍;

(2)qp的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧德市某汽車銷售中心為了了解市民購(gòu)買(mǎi)中檔轎車的意向,在市內(nèi)隨機(jī)抽取了100名市民為樣本進(jìn)行調(diào)查,他們?cè)率杖?單位:千元)的頻數(shù)分布及有意向購(gòu)買(mǎi)中檔轎車人數(shù)如下表:

月收入

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

頻數(shù)

6

24

30

20

15

5

有意向購(gòu)買(mǎi)中檔轎車人數(shù)

2

12

26

11

7

2

將月收入不低于6千元的人群稱為“中等收入族”,月收入低于6千元的人群稱為“非中等收入族”.

(Ⅰ)在樣本中從月收入在[3,4)的市民中隨機(jī)抽取3名,求至少有1名市民“有意向購(gòu)買(mǎi)中檔轎車”的概率.

(Ⅱ)根據(jù)已知條件完善下面的2×2列聯(lián)表,并判斷有多大的把握認(rèn)為有意向購(gòu)買(mǎi)中檔轎車與收入高低有關(guān)?

非中等收入族

中等收入族

總計(jì)

有意向購(gòu)買(mǎi)中檔轎車人數(shù)

40

無(wú)意向購(gòu)買(mǎi)中檔轎車人數(shù)

20

總計(jì)

100

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上在第二象限內(nèi)的一點(diǎn),且直線的斜率為.

(1)求點(diǎn)的坐標(biāo);

(2)過(guò)點(diǎn)作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點(diǎn),是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)的一次月考成績(jī)中隨機(jī)抽取了名學(xué)生的成績(jī)(滿分分),這名學(xué)生的成績(jī)都在內(nèi),按成績(jī)分為,,,五組,得到如圖所示的頻率分布直方圖.

1)求圖中的值;

2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)該校高一年級(jí)本次考試成績(jī)的平均分;

3)用分層抽樣的方法從成績(jī)?cè)?/span>內(nèi)的學(xué)生中抽取人,再?gòu)倪@人中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,求月考成績(jī)?cè)?/span>內(nèi)至少有名學(xué)生被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù),滿足,為奇函數(shù),且,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于,兩點(diǎn),則二面角的正切值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案