【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點,焦點,圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P

①若直線l與橢圓C有且只有一個公共點,求點P的坐標(biāo);

②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.

【答案】(1)橢圓C的方程為O的方程為

(2)①點P的坐標(biāo)為;②直線l的方程為

【解析】分析:(1)根據(jù)條件易得圓的半徑,即得圓的標(biāo)準(zhǔn)方程,再根據(jù)點在橢圓上,解方程組可得a,b,即得橢圓方程;(2)第一問先根據(jù)直線與圓相切得一方程,再根據(jù)直線與橢圓相切得另一方程,解方程組可得切點坐標(biāo).第二問先根據(jù)三角形面積得三角形底邊邊長,再結(jié)合①中方程組,利用求根公式以及兩點間距離公式,列方程,解得切點坐標(biāo),即得直線方程.

詳解:解:(1)因為橢圓C的焦點為,

可設(shè)橢圓C的方程為.又點在橢圓C上,

所以,解得

因此,橢圓C的方程為

因為圓O的直徑為,所以其方程為

(2)①設(shè)直線l與圓O相切于,則,

所以直線l的方程為,即

,消去y,得

.(*)

因為直線l與橢圓C有且只有一個公共點,

所以

因為,所以

因此,點P的坐標(biāo)為

②因為三角形OAB的面積為,所以,從而

設(shè)

由(*)得,

所以

因為,

所以,即,

解得舍去),則,因此P的坐標(biāo)為

綜上,直線l的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線,斜率為的直線經(jīng)過焦點,且與交于兩點滿足.

(1)求拋物線的方程;

(2)已知線段的垂直平分線與拋物線交于兩點, 為線段的中點,記點到直線的距離為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,令.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在[01]上,并且同時滿足以下兩個條件的函數(shù)fx)稱為G函數(shù).

對任意的x∈[01],總有fx≥0

當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有fx1+x2≥fx1+fx2)成立.已知函數(shù)gx=x2hx=2xb是定義在[01]上的函數(shù).

1)試問函數(shù)gx)是否為G函數(shù)?并說明理由;

2)若函數(shù)hx)是G函數(shù),求實數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)數(shù)列{an}的前n項和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)a≠0,函數(shù)

1)若,求的值;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.

(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步練習(xí)冊答案