【題目】如圖,已知函數(shù)的圖象與y軸交于點(diǎn),與x軸交于A,B兩點(diǎn),其中,

1)求函數(shù)的解析式;

2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

【答案】1;(2

【解析】

1)先根據(jù)點(diǎn)的坐標(biāo)和的取值范圍,計(jì)算出的值,再由最小正周期的定義及計(jì)算出的值,即可得到函數(shù)的解析式;

2)先根據(jù)題意寫(xiě)出的解析式,再根據(jù)正弦函數(shù)的單調(diào)性求解即可.

1)解法一:

由題意得,,所以,

因?yàn)?/span>,即,所以,

由題圖可知,所以

因?yàn)?/span>,所以,所以,

所以,

所以函數(shù)的最小正周期,

所以;

解法二:

由題意得,,所以

因?yàn)?/span>,即,所以,

因?yàn)楹瘮?shù)的最小正周期,所以,

所以,

因?yàn)?/span>

所以,

,解得

所以;

2)由三角函數(shù)圖象的伸縮變換知,

,得,

故函數(shù)的單調(diào)遞減區(qū)間為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的極坐標(biāo)方程為,設(shè)交于兩點(diǎn),中點(diǎn)為,的垂直平分線(xiàn)交.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aexx,

1)求f(x)的單調(diào)區(qū)間,

2)若關(guān)于x不等式aexx+b對(duì)任意和正數(shù)b恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長(zhǎng)交橢圓點(diǎn),且的周長(zhǎng)為.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線(xiàn)與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過(guò)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)軸交于點(diǎn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),點(diǎn)在第一象限.

,,求直線(xiàn)的方程;

,點(diǎn)為準(zhǔn)線(xiàn)上任意一點(diǎn),求證:直線(xiàn),,的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校甲、乙、丙、丁四個(gè)專(zhuān)業(yè)分別有150,150,400,300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個(gè)專(zhuān)業(yè)中抽取60名學(xué)生進(jìn)行調(diào)查,則應(yīng)從丁專(zhuān)業(yè)抽取的學(xué)生人數(shù)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對(duì)比實(shí)驗(yàn),得到如下統(tǒng)計(jì)數(shù)據(jù):

未感染病毒

感染病毒

總計(jì)

未注射疫苗

30

注射疫苗

70

總計(jì)

100

100

200

現(xiàn)從未注射疫苗的小白鼠中任取1只,取到感染病毒的小白鼠的概率為.

)能否有的把握認(rèn)為注射此種疫苗有效?

)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機(jī)抽取2只對(duì)注射疫苗情況進(jìn)行核實(shí),求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.

附:,,

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過(guò)全國(guó)人民的齊心協(xié)力,特別是全體一線(xiàn)醫(yī)護(hù)人員的共同努力,新冠肺炎疫情得到了有效控制.作為集中醫(yī)學(xué)觀(guān)察隔離點(diǎn)的某酒店在疫情期間,為客人提供兩種速食品—“方便面和“自熱米飯”.為調(diào)查這兩種速食品的受歡迎程度,酒店部門(mén)經(jīng)理記錄了連續(xù)10天這兩種速食品的銷(xiāo)售量,得到如下頻數(shù)分布表(其中銷(xiāo)售量單位:盒):

1

2

3

4

5

6

7

8

9

10

方便面

103

93

98

93

106

86

87

94

91

99

自熱米飯

88

96

98

97

101

99

102

107

104

112

1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖(填到答題卡上);

2)根據(jù)統(tǒng)計(jì)學(xué)知識(shí),你認(rèn)為哪種速食品更受歡迎,并簡(jiǎn)要說(shuō)明理由;

3)求自熱米飯銷(xiāo)售量y關(guān)于天數(shù)t的線(xiàn)性回歸方程,并預(yù)估第12天自熱米飯的銷(xiāo)售量(結(jié)果精確到整數(shù)).

參考數(shù)據(jù):.

附:回歸直線(xiàn)方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓的離心率為,為橢圓上位于第一象限上的點(diǎn),為橢圓的上頂點(diǎn),直線(xiàn)軸相交于點(diǎn),,的面積為

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)直線(xiàn)過(guò)橢圓的右焦點(diǎn),且與橢圓相交于兩點(diǎn)(、在直線(xiàn)的同側(cè)),若,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案