【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批
產(chǎn)品所需原材料減少了
噸,且每噸原材料創(chuàng)造的利潤(rùn)提高了
;若將少用的
噸原材料全部用于生產(chǎn)公司新開發(fā)的
產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為
萬元,其中a>0.
(1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來生產(chǎn)該批A產(chǎn)品的利潤(rùn),求的取值范圍;
(2)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求的最大值.
【答案】(1) (2)5.5.
【解析】
試題分析:(1)由題意, ,即可求
的取值范圍.(2)利用生產(chǎn)這批
產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批
產(chǎn)品的利潤(rùn),建立不等式,即可求
的最大值.
試題解析:
(1)由題意得:.
整理得:,又
,
故.
(2)由題意知,生產(chǎn)產(chǎn)品創(chuàng)造的利潤(rùn)為
萬元,
設(shè)備升級(jí)后,生產(chǎn)產(chǎn)品創(chuàng)造的利潤(rùn)為
萬元,
則12恒成立,
∴,且
,
∴.
∵,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立,
∴,
∴的最大值為5.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動(dòng)直線
與圓
相交于
兩點(diǎn),
與直線
相交于
.
(1)當(dāng)與
垂直時(shí),求直線
的方程,并判斷圓心
與直線
的位置關(guān)系;
(2)當(dāng)時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在
處的切線方程;
(Ⅱ)當(dāng)時(shí),若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在高為2的梯形中,
,
,
,過
、
分別作
,
,垂足分別為
、
。已知
,將梯形
沿
、
同側(cè)折起,得空間幾何體
,如圖2。
(1)若,證明:
;
(2)若,證明:
;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面
,
與
都是邊長(zhǎng)為2的等邊三角形,
,
與平面
所成的角為
,且點(diǎn)E在平面
上的射影落在
的平分線上.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)
處的切線方程;
(Ⅱ)若對(duì)
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)
在區(qū)間
上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(
,
,
,
)的圖象在點(diǎn)
處的切線的斜率為
,且函數(shù)
為偶函數(shù).若函數(shù)
滿足下列條件:①
;②對(duì)一切實(shí)數(shù)
,不等式
恒成立.
(1)求函數(shù)的表達(dá)式;
(2)設(shè)函數(shù)(
)的兩個(gè)極值點(diǎn)
,
(
)恰為
的零點(diǎn).當(dāng)
時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,
為
上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)
的直線
交
于另一點(diǎn)
,交
軸的正半軸于點(diǎn)
,且有
.當(dāng)點(diǎn)
的橫坐標(biāo)為3時(shí),
為正三角形.
(1)求的方程;
(2)延長(zhǎng)交拋物線于點(diǎn)
,過點(diǎn)
作拋物線的切線
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com