【題目】已知函數(shù)有兩個零點, ,則下面說法正確的是( )

A. B. C. D. 有極小值點,且

【答案】D

【解析】由題意得,因為,所以,設(shè)

則由圖像法知, , ,解得因此

,

,則,

所以因此,因此A錯誤;

方程有兩個不等的根,即有兩個不同的交點.

因為所以上單調(diào)遞減,且,在上單調(diào)遞減且,在上單調(diào)遞增且,且, B錯誤;

,則

所以因此,因此C錯誤;

, 當(dāng)當(dāng)所以有極小值點

因此

所以

所以,D正確. 選D.

點晴:本題考查的是利用導(dǎo)數(shù)解決函數(shù)的極值點偏移問題.解決這類問題有三個關(guān)鍵步驟:第一步求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的正負確定函數(shù)的單調(diào)增,減區(qū)間和極值點,第二步在相對小區(qū)間上構(gòu)造函數(shù)和0比較大小 ,第三步在相對大區(qū)間上利用已知函數(shù)的單調(diào)性得到目標(biāo)式的大小比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為
(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求當(dāng)x<0時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c,當(dāng)x∈R時f(x)=f(2﹣x)恒成立,且3是f(x)的一個零點. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(ax)(a>1),若函數(shù)g(x)在區(qū)間[﹣1,1]上的最大值等于5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表;

(2)判斷性別與休閑方式是否有關(guān)系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線的參數(shù)方程為參數(shù))曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點,當(dāng)變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個幾何體的正視圖和俯視圖.

(Ⅰ)試判斷該幾何體是什么幾何體?

(Ⅱ)畫出其側(cè)視圖,并求該平面圖形的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對某校高三某班學(xué)生進行了關(guān)注統(tǒng)計,得到如下數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是100﹪的強化訓(xùn)練次數(shù);

(2)若用表示統(tǒng)計數(shù)據(jù)的“強化均值”(精確到整數(shù)),若“強化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強化訓(xùn)練有效,請問這個班的強化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若當(dāng)x∈R時,函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則函數(shù)y=loga| |的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案