【題目】如圖,直線AB經(jīng)過⊙O上一點(diǎn)C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點(diǎn),⊙O交直線OB于E、D.

(1)證明:直線AB與⊙O相切;
(2)若∠CED的正切值為 ,求OA的長.

【答案】
(1)解:連接OC,

∵OA=OB,CA=CB,

∴OC⊥AB,

∴AB是⊙O的切線,即直線AB與⊙O相切.


(2)證明:依題意知,DE是直徑,

∴∠ECD=90°,

∴在Rt△ECD中,由tan∠CED= ,得

∵AB是⊙O的切線,

∴∠BCD=∠E,

又∵∠CBD=∠EBC,

∴△BCD∽△BEC,

,設(shè)BD=x,則BC=2x,

又BC2=BDBE,

∴(2x)2=x(x+6),解得x1=0,x2=2,

∵BD=x>0,

∴BD=2,

∴OA=OB=BD+OD=3+2=5.


【解析】(1)連接OC,證明:OC⊥AB,即可證明直線AB與⊙O相切;(2)證明△BCD∽△BEC,可得 ,利用切割線定理,求OA的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點(diǎn)E在平面ABC上的射影落在∠ABC的平分線上.

(1)求證:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C1與雙曲線C2有共同的焦點(diǎn),設(shè)左右焦點(diǎn)分別為F1,F(xiàn)2,P是C1與C2在第一象限的交點(diǎn), PF1F2是以PF1為底邊的等腰三角形,若橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是( )

A. (,+) B. (,+) C. (,+) D. (0,+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵(lì)市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運(yùn)力,有效利用公共交通資源合理調(diào)度,在某地鐵站點(diǎn)進(jìn)行試點(diǎn)調(diào)研市民對候車時(shí)間的等待時(shí)間(候車時(shí)間不能超過20分鐘),以便合理調(diào)度減少候車時(shí)間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進(jìn)行調(diào)查分析,得到如下統(tǒng)計(jì)表和各時(shí)間段人數(shù)頻率分布直方圖:

分組

等待時(shí)間(分鐘)

人數(shù)

第一組

[0,5)

10

第二組

[5,10)

a

第三組

[10,15)

30

第四組

[15,20)

10


(1)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個(gè)人中隨機(jī)抽取3人至少一人來自第二組的概率;
(2)從這10人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)這3個(gè)人共來自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(x≠0,常數(shù)a∈R).

(1)判斷f(x)的奇偶性,并說明理由;

(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)個(gè)質(zhì)數(shù)構(gòu)成公差為的等差數(shù)列,且.求證

(1)當(dāng)是質(zhì)數(shù)時(shí),

(2)當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓+y2=1上兩個(gè)不同的點(diǎn)A,B關(guān)于直線y=mx+對稱.

(1)求實(shí)數(shù)m的取值范圍;

(2)求△AOB面積的最大值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)分別為 交于O,A兩點(diǎn)(O為坐標(biāo)原點(diǎn)),且

求拋物線的方程;

過點(diǎn)O的直線交的下半部分于點(diǎn)M,交的左半部分于點(diǎn)N,點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓兩點(diǎn),且圓心在直線

(1)求圓的方程

(2)若直線過點(diǎn)且被圓截得的線段長為,求的方程

查看答案和解析>>

同步練習(xí)冊答案