【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;
(2)設(shè),若不等式對(duì)都成立,求實(shí)數(shù)的取值范圍;
(3)若且時(shí),求函數(shù)的零點(diǎn).
【答案】(1),.(2)(3)見(jiàn)解析
【解析】
(1)根據(jù)根與系數(shù)關(guān)系列方程組,解方程組求得的值.
(2)將不等式轉(zhuǎn)化為,求得左邊函數(shù)的最小值,由此解一元二次不等式求得的取值范圍.
(3)利用判別式進(jìn)行分類討論,結(jié)合函數(shù)的定義域,求得函數(shù)的零點(diǎn).
(1)因?yàn)椴坏仁?/span>的解集為,所以-3,1為方程的兩個(gè)根,
由根與系數(shù)的關(guān)系得
,即,.
(2)當(dāng)時(shí),,
因?yàn)椴坏仁?/span>對(duì)都成立,
所以不等式對(duì)任意實(shí)數(shù)都成立.
令,
所以.
當(dāng)時(shí),,
所以,即,得或,
所以實(shí)數(shù)的取值范圍為.
(3)當(dāng)時(shí),,
函數(shù)的圖像是開(kāi)口向上且對(duì)稱軸為的拋物線,
.
①當(dāng),即時(shí),恒成立,函數(shù)無(wú)零點(diǎn).
②當(dāng),即或時(shí),
(。┊(dāng)時(shí),,此時(shí)函數(shù)無(wú)零點(diǎn).
(ⅱ)當(dāng)時(shí),,此時(shí)函數(shù)有零點(diǎn)3.
③當(dāng),即或時(shí),令,得
,
.
(ⅰ)當(dāng)時(shí),得,此時(shí),
所以當(dāng)時(shí),函數(shù)無(wú)零點(diǎn).
(ⅱ)當(dāng)時(shí),得,此時(shí),所以當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn):,.
綜上所述:當(dāng),時(shí),函數(shù)無(wú)零點(diǎn);
當(dāng),時(shí),函數(shù)有一個(gè)零點(diǎn)為3;
當(dāng),時(shí),函數(shù)有兩個(gè)零點(diǎn):,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>.
(1)當(dāng)時(shí),若函數(shù)在區(qū)間上有最大值,求的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l:的垂線,垂足為Q,且.
Ⅰ求動(dòng)點(diǎn)P的軌跡C的方程;
Ⅱ設(shè)點(diǎn)P的軌跡C與x軸交于點(diǎn)M,點(diǎn)A,B是軌跡C上異于點(diǎn)M的不同的兩點(diǎn),且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(ax2-2x)ex,其中a≥0.
(1)當(dāng)a=時(shí),求f(x)的極值點(diǎn);
(2)若f(x)在[-1,1]上為單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周率是圓的周長(zhǎng)與直徑的比值,一般用希臘字母表示,早在公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個(gè)把圓周率的數(shù)值計(jì)算到小數(shù)點(diǎn)后第七位的人,這比歐洲早了約1000年,在生活中,我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值;從區(qū)間內(nèi)隨機(jī)抽取200個(gè)數(shù),構(gòu)成100個(gè)數(shù)對(duì),其中滿足不等式的數(shù)對(duì)共有11個(gè),則用隨機(jī)模擬的方法得到的的近似值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系平面上的一列點(diǎn),,…,,記為,若由構(gòu)成的數(shù)列滿足,,其中為與軸正方向相同的單位向量,則稱為點(diǎn)列.
(1)判斷,,,…,,是否為點(diǎn)列,并說(shuō)明理由;
(2)若為點(diǎn)列.且點(diǎn)在點(diǎn)的右上方,(即)任取其中連續(xù)三點(diǎn),,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為點(diǎn)列,正整數(shù),滿足.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)是的導(dǎo)函數(shù),若對(duì)任意的恒成立,求的取值范圍;
(3)若,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有甲,乙兩個(gè)車間生產(chǎn)同一種產(chǎn)品,甲車間有工人人,乙車間有工人人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對(duì)他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計(jì),按照進(jìn)行分組,得到下列統(tǒng)計(jì)圖.
分別估算兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間少于的人數(shù);
分別估計(jì)兩個(gè)車間工人生產(chǎn)一件產(chǎn)品時(shí)間的平均值,并推測(cè)車哪個(gè)車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時(shí)間少于的工人中隨機(jī)抽取人,求抽取人中,至少人生產(chǎn)時(shí)間少于的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com