【題目】設(shè)函數(shù)fx,已知對任意的a[1,3],若kRk0),恒有fx1fx2),則k的最小值是_____

【答案】24

【解析】

由已知可得是偶函數(shù),且在為增函數(shù),要使恒成立,只需,,而,只需,結(jié)合范圍,即可求解.

當(dāng)x0,可得﹣x0,f(﹣x)=2x+x2fx),

同樣可得x0時(shí),f(﹣x)=fx),且f0)=1,

可得fx)為偶函數(shù),

畫出fx)的圖象,可得fx)在[0,+∞)遞增,

fx1fx2),可得f|x1|f|x2|),即有|x1|≥|x2|,

x12x22≥0,即(x1x2)(x1+x2≥0,

kRk0a0),

可得x1x2,即x1x20,可得x1+x2≤0恒成立,

可得aa0,即有k

由任意的a[1,3],可得k24,

k的最小值為24

故答案為:24.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義上的函數(shù),則下列選項(xiàng)不正確的是(

A.函數(shù)的值域?yàn)?/span>

B.關(guān)于的方程個(gè)不相等的實(shí)數(shù)根

C.當(dāng)時(shí),函數(shù)的圖象與軸圍成封閉圖形的面積為

D.存在,使得不等式能成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,已知,且對一切都成立.

(1)當(dāng)時(shí).

①求數(shù)列的通項(xiàng)公式;

②若,求數(shù)列的前項(xiàng)的和;

(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機(jī)調(diào)查了80名新生,得到如下2×2列聯(lián)表

愿意

不愿意

合計(jì)

x

5

M

y

z

40

合計(jì)

N

25

80

1)寫出表中xy,z,MN的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);

2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機(jī)抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

參考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c分別為ABC三個(gè)內(nèi)角A,BC的對邊,2bcosA=acosC+ccosA

1)求角A的大。

2)若a=3,ABC的周長為8,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn)的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司在當(dāng)?shù)?/span>、兩家超市各有一個(gè)銷售點(diǎn),每日從同一家食品廠一次性購進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進(jìn)食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

銷售件數(shù)

8

9

10

11

頻數(shù)

20

40

20

20

以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進(jìn)食品的件數(shù).

(1)求的分布列;

(2)以銷售食品利潤的期望為決策依據(jù),在之中選其一,應(yīng)選哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),gx)=bx1),其中a≠0,b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案