【題目】已知函數(shù).
(1)當(dāng)時(shí),,求的值;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對任意的,恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1) (2) 單調(diào)遞增區(qū)間為和. (3)
【解析】
(1)利用可得方程,解方程求得結(jié)果;(2)分類討論得到分段函數(shù)的解析式,在每一段上根據(jù)二次函數(shù)圖象可得函數(shù)的單調(diào)遞增區(qū)間,綜合所有情況得到結(jié)果;(3)當(dāng)時(shí),可驗(yàn)證不等式成立;當(dāng)時(shí),將恒成立的不等式轉(zhuǎn)化為,則可知,根據(jù)單調(diào)性和對號函數(shù)求得最值后即可得到結(jié)果.
(1),即:,解得:或
(2)由題意得:
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增;
綜上所述:的單調(diào)遞增區(qū)間為:和
(3)當(dāng)時(shí),,所以成立
當(dāng)時(shí),恒成立
即恒成立
實(shí)數(shù)的取值范圍為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指個(gè)別測定值與測定的平均值之差,在成績統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.
(1)若m=0,寫出A∪B的子集;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左右焦點(diǎn)分別為,,離心率為.若點(diǎn)為橢圓上一動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作斜率為的動(dòng)直線交橢圓于兩點(diǎn),的中點(diǎn)為,在軸上是否存在定點(diǎn),使得對于任意值均有,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,平面,底面ABCD為直角梯形,,,且
(Ⅰ)求與平面所成角的正弦值.
(Ⅱ)若E為SB的中點(diǎn),在平面內(nèi)存在點(diǎn)N,使得平面,求N到直線AD,SA的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)且,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即,給出下列結(jié)論:
①四面體每組對棱相互垂直;
②四面體每個(gè)面的面積相等;
③從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大而小于;
④連接四面體每組對棱中點(diǎn)的線段相互垂直平分.
其中正確結(jié)論的序號是__________. (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對任意的x,y,有,f(1)=2,且.
(1)求f(0)的值;
(2)求證:對任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動(dòng).現(xiàn)從參加冬奧知識競賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識競賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績不低于分”,估計(jì)的概率;
(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com