【題目】已知有相同焦點(diǎn)、的橢圓和雙曲線交于點(diǎn),,橢圓和雙曲線的離心率分別是、,那么__________(點(diǎn)為坐標(biāo)原點(diǎn)).
【答案】
【解析】
設(shè)出橢圓的長半軸,雙曲線的實(shí)半軸,它們的半焦距,利用橢圓的和雙曲線的定義可得焦半徑,寫出兩個(gè)曲線的離心率,即可得到結(jié)果.
設(shè)橢圓的長半軸是a1,雙曲線的實(shí)半軸是a2,它們的半焦距是c
并設(shè)|PF1|=m,|PF2|=n,m>n,根據(jù)橢圓的和雙曲線的定義可得m+n=2a1,m﹣n=2a2,
解得m=a1+a2,n=a1﹣a2,
∵,∴PF1⊥PF2,
由勾股定理得|PF1|2+|PF2|2=|F1F2|2
∴(a1+a2)2+(a1﹣a2)2=(2c)2
化簡可得a12+a22=2c2
∴2
故答案為:2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是________.
①是的最大值點(diǎn).
②函數(shù)有且只有1個(gè)零點(diǎn).
③存在正實(shí)數(shù),使得恒成立.
④對(duì)任意兩個(gè)不相等的正實(shí)數(shù),若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
()求橢圓的方程.
()設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿足此圓與相交于兩點(diǎn), (兩點(diǎn)均不在坐標(biāo)軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?”(參考譯文:假設(shè)測量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過標(biāo)桿頂恰好觀測到島峰,從后標(biāo)桿退行127步,人的視線從地面過標(biāo)桿頂恰好觀測到島峰,問島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為
A. 1055步 B. 1255步 C. 1550步 D. 2255步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?”(參考譯文:假設(shè)測量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過標(biāo)桿頂恰好觀測到島峰,從后標(biāo)桿退行127步,人的視線從地面過標(biāo)桿頂恰好觀測到島峰,問島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為
A. 1055步 B. 1255步 C. 1550步 D. 2255步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計(jì)劃對(duì)所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對(duì)所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計(jì) | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計(jì) | 560 |
已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?
(2)從上述支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出12家企業(yè),然后從這12家企業(yè)選出9家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中型企業(yè)50萬元,小型企業(yè)10萬元.設(shè)為所發(fā)獎(jiǎng)勵(lì)的金額.
求的分布列和期望.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì):
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位擬從40名員工中選1人贈(zèng)送電影票,可采用下面兩種選法:
選法一:將這40名員工按1~40進(jìn)行編號(hào),并相應(yīng)地制作號(hào)碼為140的40個(gè)號(hào)簽,把這40個(gè)號(hào)簽放在一個(gè)暗箱中攪勻,最后隨機(jī)地從中抽取1個(gè)號(hào)簽,與這個(gè)號(hào)簽編號(hào)一致的員工幸運(yùn)入選;
選法二:將39個(gè)白球與1個(gè)紅球(球除顏色外,其他完全相同)混合放在一個(gè)暗箱中攪勻,讓40名員工逐一從中摸取一個(gè)球,則摸到紅球的員工幸運(yùn)入選.試問:
(1)這兩種選法是否都是抽簽法,為什么?
(2)這兩種選法中每名員工被選中的可能性是否相等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com