【題目】已知函數(shù).

(1)若函數(shù)處的切線方程為,求實數(shù)的值;

(2)若函數(shù)兩處取得極值,求實數(shù)的取值范圍;

(3)在(2)的條件下,若,求實數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】

(1)由題意得:,,解得,.

(2)由題意知:有兩個零點,

,而.

時和時分類討論,解得:.經(jīng)檢驗,合題;

(3)由題意得,,即.

所以,令,即,

,求導(dǎo),得上單調(diào)遞減,即.

,.令,求導(dǎo)得上單調(diào)遞減,得的取值范圍.

(1),

由題意得:,即,

,所以,.

(2)由題意知:有兩個零點,

,而.

①當(dāng)時,恒成立

所以單調(diào)遞減,此時至多1個零點(舍).

②當(dāng)時,令,解得:,

上單調(diào)遞減,在上單調(diào)遞增,

所以,

因為有兩個零點,所以,

解得:.

因為,,且,

上單調(diào)遞減,

所以上有1個零點;

又因為(易證),

,

上單調(diào)遞增,

所以上有1個零點.

綜上:.

(3)由題意得,,即.

所以,令,即,

,

,而

所以上單調(diào)遞減,即,

所以上單調(diào)遞減,即.

因為,.

,而恒成立,

所以上單調(diào)遞減,又,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線的對稱軸與準(zhǔn)線的交點,點為拋物線的焦點,在拋物線上且滿足,當(dāng)取最大值時,點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中是自然常數(shù).

(1)判斷函數(shù)內(nèi)零點的個數(shù),并說明理由;

(2) ,使得不等式成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t)則稱函數(shù)f (x)“T函數(shù)”.

(I)試判斷函數(shù)f1(x)=x2f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;

(Ⅱ)設(shè)f (x)“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證f (x0) =x0;

(Ⅲ)試寫出一個“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的個數(shù)最少.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,設(shè),,滿足恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1 (t為參數(shù),t≠0),其中0≤απ.在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2ρ2sin θC3ρ2cos θ.

(1)C2C3交點的直角坐標(biāo);

(2)C1C2相交于點A,C1C3相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線與函數(shù),圖像交于異于原點不同的兩點,且點,若點滿足,則( )

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“人機大戰(zhàn),柯潔哭了,機器贏了”,2017年5月27日,歲的世界圍棋第一人柯潔不敵人工智能系統(tǒng)AlphaGo,落淚離席.許多人認(rèn)為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進(jìn)行了調(diào)查.在參與調(diào)查的男性中,有人持反對意見,名女性中,有人持反對意見.再運用這些數(shù)據(jù)說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關(guān)系時,應(yīng)采用的統(tǒng)計方法是( )

A.分層抽樣B.回歸分析C.獨立性檢驗D.頻率分布直方圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次體育興趣小組的聚會中,要安排6人的座位,使他們在如圖所示的6個椅子中就坐,且相鄰座位(12,23)上的人要有共同的體育興趣愛好.現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號位置上,則4號位置上坐的是

小林

小方

小馬

小張

小李

小周

體育興趣愛好

籃球,網(wǎng)球,羽毛球

足球,排球,跆拳道

籃球,棒球,乒乓球

擊劍,網(wǎng)球,足球

棒球,排球,羽毛球

跆拳道,擊劍,自行車

A.小方B.小張C.小周D.小馬

查看答案和解析>>

同步練習(xí)冊答案