【題目】設△ABC的內(nèi)角為A、B、C所對邊的長分別是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.

【答案】
(1)解:∵A=2B, ,b=3,

∴a=6cosB,

∴a=6 ,

∴a=2


(2)解:∵a=6cosB,

∴cosB= ,

∴sinB= ,

∴sinA=sin2B= ,cosA=cos2B=2cos2B﹣1=﹣ ,

∴sin(A+ )= (sinA+cosA)=


【解析】(1)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(2)求出sinA,cosA,即可求sin(A+ )的值.
【考點精析】解答此題的關鍵在于理解兩角和與差的正弦公式的相關知識,掌握兩角和與差的正弦公式:,以及對正弦定理的定義的理解,了解正弦定理:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過市場調(diào)查,某種商品在銷售中有如下關系:x(1≤x≤30,x∈N+)天的銷售價格(單位:/)f(x)=x天的銷售量(單位:)g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200(銷售收入=銷售價格×銷售量).

(1)a的值,并求第15天該商品的銷售收入;

(2)求在這30天中,該商品日銷售收入y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,

(1)求直方圖中x的值;

(2)如果上學所需時間不少于1小時的學生可申請在學校住宿,若該學校有600名新生,請估計新生中有多少名學生可以申請住宿;

(3)由頻率分布直方圖估計該校新生上學所需時間的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移φ個單位,所得圖象關于y軸對稱,則φ的最小正值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩個不共線的非零向量.

1)設,,那么當實數(shù)t為何值時,AB,C三點共線;

2)若,的夾角為60°,那么實數(shù)x為何值時的值最?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程;

(Ⅰ)求曲線的普通方程和曲線的直角坐標方程;

(Ⅱ)設為曲線上的動點,求點到曲線上的距離的最小值的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點.

(1)求證:平面;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.

(1)求證:

(2)若為線段的中點,求證:平面;

(3)求多面體的體積.

查看答案和解析>>

同步練習冊答案