【題目】經(jīng)過市場調(diào)查,某種商品在銷售中有如下關(guān)系:第x(1≤x≤30,x∈N+)天的銷售價格(單位:元/件)為f(x)=第x天的銷售量(單位:件)為g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200元(銷售收入=銷售價格×銷售量).
(1)求a的值,并求第15天該商品的銷售收入;
(2)求在這30天中,該商品日銷售收入y的最大值.
【答案】(1) a=50. 第15天該商品的銷售收入為1 575元.
(2) 當(dāng)x=5時,該商品日銷售收入最大,最大值為2 025元.
【解析】
(1)由題意可得f(20)g(20)=(60-20)(a-20)=1 200,則a=50.據(jù)此計算可得第15天該商品的銷售收入為1 575元.
(2)由題意可知y=結(jié)合分段函數(shù)的解析式分類討論可得x=5時,該商品日銷售收入最大,最大值為2 025元.
(1)當(dāng)x=20時,由f(20)g(20)=(60-20)(a-20)=1 200,
解得a=50.
從而可得f(15)g(15)=(60-15)(50-15)=1 575(元),
即第15天該商品的銷售收入為1 575元.
(2)由題意可知
y=
即y=
當(dāng)1≤x≤10時,y=-x2+10x+2 000=-(x-5)2+2 025.
故當(dāng)x=5時y取最大值,ymax=-52+10×5+2 000=2 025.
當(dāng)10<x≤30時,y<102-110×10+3 000=2 000.
故當(dāng)x=5時,該商品日銷售收入最大,最大值為2 025元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求該函數(shù)的定義域;
(2)當(dāng)時,如果對任何都成立,求實數(shù)的取值范圍;
(3)若,將函數(shù)的圖像沿軸方向平移,得到一個偶函數(shù)的圖像,設(shè)函數(shù)的最大值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率是,且直線: 被橢圓截得的弦長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與圓: 相切:
(i)求圓的標(biāo)準(zhǔn)方程;
(ii)若直線過定點(diǎn),與橢圓交于不同的兩點(diǎn)、,與圓交于不同的兩點(diǎn)、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于莖葉圖的說法,結(jié)論錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是25
C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為2,點(diǎn)為的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動點(diǎn),則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題錯誤的序號為_______
(1) 樣本頻率分布直方圖中小矩形的高就是對應(yīng)組的頻率.
(2) 過點(diǎn)P(2,-2)且與曲線相切的直線方程是.
(3) 若樣本的平均數(shù)是5,方差是3,則數(shù)據(jù)的平均數(shù)是11,方差是12.
(4) 拋擲一顆質(zhì)地均勻的骰子,事件“向上點(diǎn)數(shù)不大于4”和事件“向上點(diǎn)數(shù)不小于3”是對立事件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角為A、B、C所對邊的長分別是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com