已知函數(shù)f(x)=2x-x2,x∈[4,5],對(duì)于f(x)值域內(nèi)的所有實(shí)數(shù)m,滿(mǎn)足不等式t2+mt+4>2m+4t恒成立t的集合是( 。
分析:先利用導(dǎo)數(shù)判斷函數(shù)f(x)的單調(diào)性,由單調(diào)性可求得f(x)在[4,5]上的值域[0,7],t2+mt+4>2m+4t恒成立即(t-2)m+t2-4t+4>0對(duì)任意m∈[0,7]恒成立,令g(m)=(t-2)m+t2-4t+4,則有
g(0)>0
g(7)>0
,解出即可.
解答:解:f′(x)=2xln2-2x,[f′(x)]′=2xln22-2,
因?yàn)閘n2>ln
e
=
1
2
,所以當(dāng)x≥4時(shí),[f′(x)]′=2xln22-2≥24ln22-2>0,
故f′(x)在[4,5]上遞增,且f′(x)≥f′(4)=24ln2-2×4>0,
所以f(x)在[4,5]上遞增,所以f(x)min=f(4)=0,f(x)max=f(5)=7,即m∈[0,7].
t2+mt+4>2m+4t恒成立即(t-2)m+t2-4t+4>0對(duì)任意m∈[0,7]恒成立,令g(m)=(t-2)m+t2-4t+4,
則有
g(0)>0
g(7)>0
,即
t2-4t+4>0
(t-2)•7+t2-4t+4>0
,解得t<-5,或t>2,
故選C.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的值域及函數(shù)恒成立問(wèn)題,函數(shù)恒成立問(wèn)題往往轉(zhuǎn)化為函數(shù)最值解決,或數(shù)形結(jié)合利用函數(shù)圖象處理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿(mǎn)足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案