【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

【答案】

【解析】

試題()連接BDACO點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;()延長AEM連結DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積

試題解析:(1)證明:連接BDAC于點O,連接EO.

因為ABCD為矩形,所以OBD的中點.

EPD的中點,所以EO∥PB.

因為EO平面AEC,PB平面AEC

所以PB∥平面AEC.

(2)因為PA⊥平面ABCD,ABCD為矩形,

所以AB,ADAP兩兩垂直.

如圖,以A為坐標原點,,AD,AP的方向為xyz軸的正方向,||為單位長,建立空間直角坐標系Axyz,則D,E.

B(m,00)(m>0),則C(m,,0)(m,0)

n1(x,y,z)為平面ACE的法向量,

可取n1.

n2(1,00)為平面DAE的法向量,

由題設易知|cosn1,n2|,即

,解得m.

因為EPD的中點,所以三棱錐EACD的高為.三棱錐EACD的體積V××××.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是中國古代第一部數(shù)學專著,成于公元一世紀左右,系統(tǒng)總結了戰(zhàn)國、秦、漢時期的數(shù)學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,平面,,,

1)求證: 平面平面;

2為棱上異于的點,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌汽車4S店對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:

付款方式

1

2

3

4

5

頻數(shù)

40

20


10


已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤.

(Ⅰ)求上表中的值;

(Ⅱ)若以頻率作為概率,求事件購買該品牌汽車的3位顧客中,至多有一位采用3期付款的概率;

)求Y的分布列及數(shù)學期望EY

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商場對每天進店人數(shù)和商品銷售件數(shù)進行了統(tǒng)計對比,得到如下表格:

(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖,并由散點圖判斷銷售件數(shù)與進店人數(shù)是否線性相關?(給出判斷即可,不必說明理由)

(2)建立關于的回歸方程(系數(shù)精確到0.01),預測進店人數(shù)為80時,商品銷售的件數(shù)(結果保留整數(shù)).

參考數(shù)據(jù):,,,,.

參考公式:回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“紅燈停,綠燈行”,這是我們每個人都應該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號燈、隨意穿行交叉路口的“中國式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國式過馬路”是衡量這座城市文明程度的重要指標.某調(diào)查機構為了了解路人對“中國式過馬路”的態(tài)度,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

男性

女性

合計

反感

10

不反感

8

合計

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是

(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?

(2)若從這30人中的女性路人中隨機抽取2人參加一項活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學期望.

附:,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

函數(shù)的最大值為1;

,的否定是;

為銳角三角形,則有;

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

其中錯誤的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對稱軸為坐標軸的橢圓的焦點為,,上.

(1)求橢圓的方程;

(2)設不過原點的直線與橢圓交于,兩點,且直線,,的斜率依次成等比數(shù)列,則當的面積為時,求直線的方程.

查看答案和解析>>

同步練習冊答案