【題目】四棱錐中,平面,,,,

1)求證: 平面平面;

2為棱上異于的點(diǎn),且,求直線與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)根據(jù)相似三角形,證得,又由平面,得到 ,利用線面垂直的判定定理,證得平面,再由面面垂直的判定定理,即可得到平面平面

2)以為原點(diǎn),所在的直線為軸,建立空間直角坐標(biāo)系,設(shè),,利用以,求得,得到,再求得平面的一個(gè)法向量,利用向量的夾角公式,即可求解.

1)證明:在中,因?yàn)?/span>, ,

所以,,所以.

因?yàn)?/span>,所以,所以

因?yàn)?/span>平面,平面,所以 ,

,所以平面,

平面, 所以平面平面

2)過,因?yàn)?/span>平面,所以平面,即兩兩相垂直,以為原點(diǎn),所在的直線為軸,建立空間直角坐標(biāo)系,

因?yàn)?/span>,,,

所以,,,,

,,

設(shè),.則,

.

因?yàn)?/span>,所以,即,

解得,.因?yàn)?/span>,所以

所以,即

設(shè)為平面的一個(gè)法向量,則,

所以取

設(shè)直線與平面所成角為,

,

所以直線與平面所成角的正弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個(gè)三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,記

1)若,求的值;

2)在銳角中,角的對(duì)邊分別是,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①越小,XY有關(guān)聯(lián)的可信度越小;②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1;“若,則類比推出,“若,則;④命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了“三段論”,推理形式錯(cuò)誤.其中說法正確的有( )個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)已知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

2)若對(duì)任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若a=1,求f(x)的極值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某新上市的電子產(chǎn)品舉行為期一個(gè)星期(7天)的促銷活動(dòng),規(guī)定購買該電子產(chǎn)品可免費(fèi)贈(zèng)送禮品一份,隨著促銷活動(dòng)的有效開展,第五天工作人員對(duì)前五天中參加活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加該活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

2)預(yù)測(cè)該星期最后一天參加該活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出了根據(jù)我國2012~2018年水果人均占有量y(單位:kg)和年份代碼x繪制的散點(diǎn)圖(2012~2018年的年份代碼x分別為1~7).

1)根據(jù)散點(diǎn)圖相應(yīng)數(shù)據(jù)計(jì)算得,,求y關(guān)于x的線性回歸方程;

2)估計(jì)我國2023年水果人均占有量是多少?(精確到1kg).

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案