設(shè)函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

(Ⅰ)1(Ⅱ)

解析試題分析:(Ⅰ)時(shí),,.
當(dāng)時(shí),;當(dāng)時(shí),.
所以上單調(diào)減小,在上單調(diào)增加
的最小值為
(Ⅱ),
當(dāng)時(shí),,所以上遞增,
,所以,所以上遞增,
,于是當(dāng)時(shí), .
當(dāng)時(shí),由
當(dāng)時(shí),,所以上遞減,
,于是當(dāng)時(shí),,所以上遞減,
,所以當(dāng)時(shí),.
綜上得的取值范圍為.
考點(diǎn):利用函數(shù)導(dǎo)數(shù)求函數(shù)的最值,判定函數(shù)單調(diào)性
點(diǎn)評(píng):本題第二問用到了對(duì)函數(shù)導(dǎo)函數(shù)的再次求導(dǎo),從而確定導(dǎo)函數(shù)的單調(diào)區(qū)間,導(dǎo)函數(shù)的最值導(dǎo)數(shù)值的范圍,進(jìn)而得到原函數(shù)的單調(diào)性,難度較大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為的導(dǎo)函數(shù),滿足
(1)求的單調(diào)區(qū)間.
(2)設(shè),,求函數(shù)上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù).(
(1)若函數(shù)有三個(gè)零點(diǎn),且,,求函數(shù) 的單調(diào)區(qū)間;
(2)若,,試問:導(dǎo)函數(shù)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)的兩個(gè)零點(diǎn)之間的距離不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),試判斷的單調(diào)性并給予證明;
(Ⅱ)若有兩個(gè)極值點(diǎn)
(i) 求實(shí)數(shù)a的取值范圍;
(ii)證明:。 (注:是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若函數(shù),處取得極值,求的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)
若函數(shù)時(shí)取得極值,且當(dāng)時(shí),恒成立.
(1)求實(shí)數(shù)的值;
(2)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)處取得極值,對(duì),恒成立,
求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),試比較的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案