精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.

)求的值;

)過點的直線分別交于(均異于點),若,求直線的方程.

【答案】() ; ().

【解析】試題分析:(1)由上半橢圓和部分拋物公共點為,得,設的半焦距為,由,解得;

2)由(1)知,上半橢圓的方程為,易知,直線軸不重合也不垂直,故可設其方程為,并代入的方程中,整理得: ,

由韋達定理得,又,得,從而求得,繼而得點的坐標為,同理,由得點的坐標為,最后由,解得,經檢驗符合題意,故直線的方程為.

試題解析:(1)在方程中,令,得

方程中,令,得

所以

的半焦距為,由,解得

所以,

2)由(1)知,上半橢圓的方程為,

易知,直線軸不重合也不垂直,設其方程為

代入的方程中,整理得:

*

設點的坐標

由韋達定理得

,得,從而求得

所以點的坐標為

同理,由得點的坐標為

,

,

, ,解得

經檢驗, 符合題意,

故直線的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中,,, ,外接球的球心為,點是側棱上的一個動點.有下列判斷:

① 直線與直線是異面直線;②一定不垂直;

③ 三棱錐的體積為定值; ④的最小值為.

其中正確的序號序號是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點分別為A,B,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

(Ⅰ)若點P在橢圓C的內部,求直線AM的斜率的取值范圍;

(Ⅱ)設橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若,求處的切線方程;

(2)若對于任意的正數,恒成立,求實數的值;

(3)若函數存在兩個極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(/人)的數據如下:

溫差

患感冒人數

8

11

14

20

23

26

其中,.

(Ⅰ)請用相關系數加以說明是否可用線性回歸模型擬合的關系;

(Ⅱ)建立關于的回歸方程(精確到),預測當晝夜溫差升高時患感冒的小朋友的人數會有什么變化?(人數精確到整數)

參考數據:.參考公式:相關系數:,回歸直線方程是, ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,ADBCBC=2AD,E,F分別為AD,BC的中點,AE=EF,.將四邊形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如圖2),GBF的中點.

1)證明:ACEG;

2)在線段BC上是否存在一點H,使得DH∥平面ABFE?若存在,求的值;若不存在,說明理由;

3)求二面角D-AC-F的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對給定的dN*,記由數列構成的集合

1)若數列{an}∈Ω(2),寫出a3的所有可能取值;

2)對于集合Ω(d),若d≥2.求證:存在整數k,使得對Ω(d)中的任意數列{an},整數k不是數列{an}中的項;

3)已知數列{an},{bn}∈Ω(d),記{an},{bn}的前n項和分別為An,Bn.若|an+1|≤|bn+1|,求證:AnBn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD為矩形,平面ABCD,EPD的中點.

1)證明:平面AEC;

2)若,,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ4cosθ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數方程為t為參數).

1)求曲線C的直角坐標方程與直線l的普通方程;

2)設曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內接矩形,求該矩形的面積.

查看答案和解析>>

同步練習冊答案