方程f(x)=x的根稱為f(x)的不動點,若函數(shù)f(x)=
x
a(x+2)
有唯一不動點,且x1=1000,xn+1=
1
f( 
1
xn
(n∈N*),則x2011=
 
分析:先根據(jù)
x
a(x+2)
=x轉化為二次方程,再由函數(shù)f(x)=
x
a(x+2)
有唯一不動點可求出a的值,然后代入確定函數(shù)f(x)的解析式,進而可得到xn+1、xn的關系,再由等差數(shù)列的通項公式可得到最后答案.
解答:解:由
x
a(x+2)
=x得ax2+(2a-1)x=0.
因為f(x)有唯一不動點,
所以2a-1=0,即a=
1
2

所以f(x)=
2x
x+2
.所以xn+1=
1
f( 
1
xn
=
2xn+1
2
=xn+
1
2

所以x2011=x1+
1
2
×2010=1000+
2010
2
=2005.
故答案為:2005
點評:本題主要考查函數(shù)不動點的知識、考查數(shù)列的函數(shù)性質以及等差數(shù)列的通項公式的表示法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

滿足方程f(x)=x的根x0稱為函數(shù)y=f(x)的不動點,設函數(shù)y=f(x),y=g(x)都有不動點,則下列陳述正確的是
(4)
(4)

(1)y=f(g(x))與y=f(x)具有相同數(shù)目的不動點  (2)y=f(g(x))一定有不動點
(3)y=f(g(x))與y=g(x)具有相同數(shù)目的不動點  (4)y=f(g(x))可以無不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足方程f(x)=x的根x0稱為函數(shù)y=f(x)的不動點,設函數(shù)y=f(x),y=g(x)都有不動點,則下列陳述正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省常德一中高三(下)第七次月考數(shù)學試卷(文科)(解析版) 題型:填空題

方程f(x)=x的根稱為f(x)的不動點,若函數(shù)f(x)=有唯一不動點,且x1=1000,xn+1=(n∈N*),則x2011=   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考數(shù)學復習:6.5 合情推理與演繹推理(1)(解析版) 題型:解答題

方程f(x)=x的根稱為f(x)的不動點,若函數(shù)f(x)=有唯一不動點,且x1=1000,xn+1=(n∈N*),則x2011=   

查看答案和解析>>

同步練習冊答案