【題目】如圖,在平面直角坐標系xOy中,已知圓C:x2+y2-4x=0及點A(-1,0),B(1,2)
(1)若直線l平行于AB,與圓C相交于M,N兩點,MN=AB,求直線l的方程;
(2)若圓C上存在兩個點P,使得PA2+PB2=a(a>4),求a的取值范圍.
【答案】(1)x-y=0或x-y-4=0;(2)(22-8,22+8)
【解析】
(1)由題得直線AB方程為x-y+1=0, 設(shè)直線l的方程為x-y+m=0,由r2=()2+()2,解得m=0或-4,即得直線l的方程為x-y=0或x-y-4=0;(2)設(shè)P(x,y),由題得x2+(y-1)2=-2,即得P的軌跡是以(0,1)為圓心,為半徑的圓,由兩圓相交可得-2<<+2,解不等式即得a的取值范圍.
解:(1)根據(jù)題意,圓C的標準方程為(x-2)2+y2=4,
所以圓心C(2,0),半徑為2.
因為l∥AB,A(-1,0),B(1,2),直線AB的方程為x-y+1=0,且|AB|==2,
設(shè)直線l的方程為x-y+m=0,
又由MN=AB=2,圓心C到直線l的距離d=
則有r2=()2+()2,即()2=2,解可得m=0或-4,
故直線l的方程為x-y=0或x-y-4=0;
(2)根據(jù)題意,設(shè)P(x,y),
若PA2+PB2=a,則PA2+PB2=(x+1)2+(y-0)2+(x-1)2+(y-2)2=a,
變形可得:x2+y2-2y+3=,即x2+(y-1)2=-2,
則P的軌跡是以(0,1)為圓心,為半徑的圓;
若圓C上存在兩個點P,使得PA2+PB2=a,則圓C與圓x2+(y-1)2=4相交,
兩圓的圓心距d′==,
則有-2<<+2,
解可得:22-8<a<22+8,
故a的取值范圍為(22-8,22+8).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知A=,B=,AB=6.在AB邊上取點E,使得BE=1,連接EC,ED.若∠CED=,EC=.
(1)求sin∠BCE的值;
(2)求CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);
(2)根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
參考公式:
(1)給定臨界值表
P(K) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)其中為樣本容量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:.
(1)求經(jīng)過點且與圓C相切的直線方程;
(2)設(shè)直線與圓C相交于A,B兩點,若,求實數(shù)n的值;
(3)若點在以為圓心,以1為半徑的圓上,距離為4的兩點P,Q在圓C上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓: 的左右焦點分別為, ,左右頂點分別為, , 為橢圓上的動點(不與, 重合),且直線與的斜率的乘積為.
(1)求橢圓的方程;
(2)過作兩條互相垂直的直線與(均不與軸重合)分別與橢圓交于, , , 四點,線段、的中點分別為、,求證:直線過定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)其中
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個零點,
(i)求的取值范圍;
(ii)設(shè)的兩個零點分別為x1,x2,證明:x1x2>e2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點P,使得由點P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com