考點:數(shù)列的求和,數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得a
n-a
n-1=1,(n≥3,n∈N
*),a
2=3,從而求出a
n=
.
(2)利用數(shù)學(xué)歸納法進(jìn)行證明.
(3)設(shè)f(x)=ln(1+x)-x,則
f′(x)=-1=<0,從而ln(1+x)<x,ln(1+
)<
<
=
-,由此能證明
(1+)(1+)…(1+)<(n≥2,n∈N*).
解答:
(1)解:當(dāng)n≥3時,
Sn=nan+2-,①
Sn-1=(n-1)an-1+2-,②
①-②,得
an=nan-(n-1)an-1-×2,
∴a
n-a
n-1=1,(n≥3,n∈N
*),
∵a
1+a
2=2a
2+2-1,
∴a
2=3,
∴a
n=
.
(2)證明:①當(dāng)n=2時,
b2=b12-2=14>3=a2,不等式成立;
②假設(shè)當(dāng)n=k(k≥2,k∈N
*)時,不等式成立,即b
k>k+1,
則當(dāng)n=k+1時,
bk+1=bk2-(k-1)bk-2=b
k(b
k-k+1)-2
>2b
k-2>2(k+1)-2=2k≥k+2,
∴當(dāng)n=k+1時,不等式也成立,
由①②,得b
n>a
n(n≥2,n∈N
*).
(3)證明:設(shè)f(x)=ln(1+x)-x,
f′(x)=-1=<0,
∴f(x)在(0,+∞)上單調(diào)遞減,f(x)<f(0),
∴l(xiāng)n(1+x)<x,
∵當(dāng)n≥2,n∈N
*時,
<=
,
∴l(xiāng)n(1+
)<
<
=
-,
∴l(xiāng)n(1+
)+ln(1+
)+…+ln(1+
)
<
-+-+…+-=
-<
,
∴
(1+)(1+)…(1+)<(n≥2,n∈N*).
點評:本題考查數(shù)列的通項公式的求法,考查不等式的證明,解題時要注意數(shù)學(xué)歸納法、裂項求和法的合理運用.