【題目】如圖,在三棱柱中,,,,是的中點(diǎn),E是棱上一動點(diǎn).
(1)若E是棱的中點(diǎn),證明:平面;
(2)求二面角的余弦值;
(3)是否存在點(diǎn)E,使得,若存在,求出E的坐標(biāo),若不存在,說明理由.
【答案】(1)詳見解析;(2);(3)不存在,理由詳見解析.
【解析】
(1)取中點(diǎn)為,連結(jié),證明,再利用線面平行判定定理,即可證得結(jié)論;
(2)先證明兩兩垂直,再建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量,平面ABC的法向量為,再利用向量的夾角公式,即可得答案;
(3)設(shè),由,解得與假設(shè)矛盾,從而得到結(jié)論.
(1)證明:取中點(diǎn)為,連結(jié),
在中,因?yàn)?/span>為的中點(diǎn),
所以且.
又因?yàn)?/span>是的中點(diǎn),,
所以且,
所以為平行四邊形
所以.
又因?yàn)?/span>平面, .
平面,
所以平面.
(2)連結(jié),
因?yàn)?/span>是等邊三角形,是的中點(diǎn),
所以,
因?yàn)?/span>,,
所以.
因?yàn)槠矫?/span>平面,
平面平面,
平面,
所以平面,
所以兩兩垂直.
則,,,
,
設(shè)平面的法向量為,
則,
即,
令,則,,
所以.
平面ABC的法向量為,
.
又因?yàn)槎娼?/span>為銳二面角,
所以二面角的余弦值為.
(3),,
設(shè),
則,
所以,,
所以,
假設(shè),
則,解得,
這與已知矛盾.不存在點(diǎn)E.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在正實(shí)數(shù)上的函數(shù),其中表示不小于x的最小整數(shù),如,,當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,記集合中元素的個數(shù)為,則=____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為.(為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)和 l的直角坐標(biāo)方程;
(2)把曲線上各點(diǎn)的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)伸長為原來的倍,得到曲線,為上動點(diǎn),求中點(diǎn)到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),直線的普通方程為,設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),記點(diǎn)的軌跡為曲線. 在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的方程為.
(1)求曲線的普通方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,若直線與的夾角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,.求的最大值;
(2)若函數(shù)有且只有一個零點(diǎn),且滿足條件的,使不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,:,圓:.
(1)當(dāng)為何值時(shí),直線與平行;
(2)當(dāng)直線與圓相交于,兩點(diǎn),且時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).
(1)若,證明在區(qū)間上沒有零點(diǎn);
(2)在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)滿足:對任何,都有,且當(dāng)時(shí),.在下列結(jié)論:
(1)對任何,都有;(2)任意,都有;
(3)函數(shù)的值域是;
(4)“函數(shù)在區(qū)間上單調(diào)遞減”的充要條件是“存在,使得”.
其中正確命題是( )
A.(1)(2)B.(1)(2)(3)C.(1)(3)(4)D.(2)(3)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com