數(shù)學英語物理化學 生物地理
數(shù)學英語已回答習題未回答習題題目匯總試卷匯總
【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點A,O為坐標原點,則直線OA被該封閉圖形解得的線段長小于 的概率是( )A.B.C.D.
【答案】C【解析】解:拋物線y=x2與直線y=2所圍成的面積為 S陰影= (2﹣x2)dx=(2x﹣ x3)| = ,以O(shè)為原點, 為半徑的圓與拋物線y=x2分別交于B,C兩點,則OB=OC= ,圓O的方程為x2+y2=2,故A點只有在紅色區(qū)域內(nèi)時,直線OA被直線OA被該封閉圖形解得的線段長小于 ,由 ,解得 或 ,∴B(﹣1,1),C(1,1),∴直線OB,OC的解析式分別為y=﹣x或y=x,∴紅色區(qū)域面積S紅= + (x﹣x2)dx=(﹣ )| +( )| = + ,∴直線OA被該封閉圖形解得的線段長小于 的概率P= = = ,故選:C【考點精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
科目:高中數(shù)學 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,點E是PC的中點,作EF⊥PB交PB于點F.
(Ⅰ)求證:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大小.
【題目】已知 是函數(shù)f(x)=msinωx﹣cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π (Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;(Ⅱ)設(shè)角A,B,C為△ABC的三個內(nèi)角,對應(yīng)邊分別為a,b,c,若f(B)=2, ,求 的取值范圍.
【題目】已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線C1:ρ=1, (t為參數(shù)). (Ⅰ)求曲線C1上的點到曲線C2距離的最小值;(Ⅱ)若把C1上各點的橫坐標都擴大為原來的2倍,縱坐標擴大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點,求|PA|+|PB|.
【題目】已知x,y∈R. (Ⅰ)若x,y滿足 , ,求證: ;(Ⅱ)求證:x4+16y4≥2x3y+8xy3 .
【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
現(xiàn)對某城市30天的空氣質(zhì)量進行監(jiān)測,獲得30個API數(shù)據(jù)(每個數(shù)據(jù)均不同),統(tǒng)計繪得頻率分布直方圖如圖.
(1)請由頻率分布直方圖來估計這30天API 的平均值;
(2)若從獲得的“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染” 的數(shù)據(jù)中隨機選取個數(shù)據(jù)進行復查,求“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染”數(shù)據(jù)恰均被選中的概率;
(3)假如企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元)與空氣質(zhì)量指數(shù)API (記為)的關(guān)系式為,
若將頻率視為概率,在本年內(nèi)隨機抽取一天,試估計這天的經(jīng)濟損失S不超過600元的概率.
【題目】如圖,四邊形為矩形,且平面, ,為的中點.
(1)求證:;
(2)求三棱錐的體積;
(3)探究在上是否存在點,使得平面,并說明理由.
【題目】如圖所示,在直三棱柱中, ,點分別是的中點.
(1)求證: ∥平面;
(2)若,求證: .
百度致信 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)