【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點(diǎn)A,O為坐標(biāo)原點(diǎn),則直線OA被該封閉圖形解得的線段長小于 的概率是( )
A.
B.
C.
D.
【答案】C
【解析】解:拋物線y=x2與直線y=2所圍成的面積為 S陰影= (2﹣x2)dx=(2x﹣ x3)| = ,
以O(shè)為原點(diǎn), 為半徑的圓與拋物線y=x2分別交于B,C兩點(diǎn),
則OB=OC= ,圓O的方程為x2+y2=2,
故A點(diǎn)只有在紅色區(qū)域內(nèi)時(shí),
直線OA被直線OA被該封閉圖形解得的線段長小于 ,
由 ,解得 或 ,
∴B(﹣1,1),C(1,1),
∴直線OB,OC的解析式分別為y=﹣x或y=x,
∴紅色區(qū)域面積S紅= + (x﹣x2)dx=(﹣ )| +( )| = + ,
∴直線OA被該封閉圖形解得的線段長小于 的概率P= = = ,
故選:C
【考點(diǎn)精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(Ⅰ)求證:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是函數(shù)f(x)=msinωx﹣cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)角A,B,C為△ABC的三個(gè)內(nèi)角,對應(yīng)邊分別為a,b,c,若f(B)=2, ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
現(xiàn)對某城市30天的空氣質(zhì)量進(jìn)行監(jiān)測,獲得30個(gè)API數(shù)據(jù)(每個(gè)數(shù)據(jù)均不同),統(tǒng)計(jì)繪得頻率分布直方圖如圖.
(1)請由頻率分布直方圖來估計(jì)這30天API 的平均值;
(2)若從獲得的“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染” 的數(shù)據(jù)中隨機(jī)選取個(gè)數(shù)據(jù)進(jìn)行復(fù)查,求“空氣質(zhì)量優(yōu)”和“空氣質(zhì)量中重度污染”數(shù)據(jù)恰均被選中的概率;
(3)假如企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API (記為)的關(guān)系式為,
若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天的經(jīng)濟(jì)損失S不超過600元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為矩形,且平面, ,為的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積;
(3)探究在上是否存在點(diǎn),使得平面,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com