【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,點E是PC的中點,作EF⊥PB交PB于點F.
(Ⅰ)求證:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大小.
【答案】(Ⅰ)見解析;(2)60°.
【解析】試題分析:
(Ⅰ)要證直線PB與平面AEF垂直,就要證PB與平面AEF內(nèi)兩條相交直線垂直,其中已知有一個垂直:EF⊥PB,由等腰三角形性質(zhì)知AE⊥PC,因此可先證AE⊥平面PBC得AE⊥PB,這又可通過證明BC⊥平面PAC得到;(Ⅱ)要求二面角大小,由圖可建立空間直角坐標(biāo)系(見解析),寫出各點坐標(biāo),求出二面角兩個面的法向量,由法向量夾角得二面角(相等或互補).
試題解析:
(Ⅰ)證明:∵PA⊥面ABC,BC面ABC,
∴PA⊥BC,又AC⊥BC,PA⊥BC,PA∩AC=A,∴BC⊥面PAC,
而AEPAC,∴BC⊥AE,又PA=AC,點E是PC的中點,∴AE⊥PC,
又AE⊥BC,BC∩PC=C,∴AE⊥面PBC,而PB面PBC,AE⊥PB,又EF⊥PB,AE⊥BP,AE∩EF=E,∴PB⊥平面AEF;
(Ⅱ)解:以A為坐標(biāo)原點,AC所在直線為y軸,AP所在直線為z軸建立空間直角坐標(biāo)系,
∵PA=AC=BC=1,則A(0,0,0),P(0,0,1),C(0,1,0),B(1,1,0).
.
設(shè)平面PAB的一個法向量為,
則由,得,取y1=﹣1,得x1=1,z1=0,
∴.
再設(shè)平面PBC的一個法向量為,
則由,得,取z2=1,得y2=1,
∴.
∴.
∴二面角A﹣PB﹣C的大小為60°.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(lga+2)x+lgb滿足f(﹣1)=﹣2且對于任意x∈R,恒有f(x)≥2x成立.
(1)求實數(shù)a,b的值;
(2)解不等式f(x)<x+5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若在上為減函數(shù),求的取值范圍;
(2)若關(guān)于的方程在內(nèi)有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x-),x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查甲、乙兩種品牌商品的市場認(rèn)可度,在某購物網(wǎng)點隨機(jī)選取了14天,統(tǒng)計在某確定時間段的銷量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖求:
(1)甲、乙兩種品牌商品銷量的中位數(shù)分別是多少?
(2)甲品牌商品銷量在[20,50]間的頻率是多少?
(3)甲、乙兩個品牌商品哪個更受歡迎?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點A,O為坐標(biāo)原點,則直線OA被該封閉圖形解得的線段長小于 的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com