【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.
(Ⅰ)求證:直線平面;
(Ⅱ)若平面,求證:;
(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2 ,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,且FO⊥平面ABCD,F(xiàn)O= .
(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O﹣ADE的體積;
(3)求證:平面AEF⊥平面BCF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| ﹣ |
(2)若 與 夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD﹣A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點,P是上底面的棱AD上的一點,AP= ,過P、M、N的平面交上底面于PQ,Q在CD上,則PQ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中, , 為非零常數(shù).
(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項公式;
(2)若數(shù)列是公差不等于零的等差數(shù)列.
①求實數(shù), 的值;
②數(shù)列的前項和構(gòu)成數(shù)列,從中取不同的四項按從小到大排列組成四項子數(shù)列.試問:是否存在首項為的四項子數(shù)列,使得該子數(shù)列中的所有項之和恰好為2017?若存在,求出所有滿足條件的四項子數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為,定點, 為圓上一點,線段上一點滿足,直線上一點,滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)為坐標原點, 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點.當且滿足時,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新式藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com