已知各項均為正數的數列前n項和為,首項為,且等差數列。
(1)求數列的通項公式;
(2)若,設,求數列的前n項和.
科目:高中數學 來源: 題型:解答題
已知等比數列{an}的前n項和Sn滿足:S4-S1=28,且a3+2是a2,a4的等差中項.
(1)求數列{an}的通項公式;
(2)若數列{an}為遞增數列,,,問是否存在最小正整數n使得成立?若存在,試確定n的值,不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列,滿足,,,.
(1)求證:數列是等差數列,并求數列的通項公式;
(2)設數列滿足,對于任意給定的正整數,是否存在正整數,(),使得,,成等差數列?若存在,試用表示,;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知等比數列{an}中,a2=32,a8=,an+1<an.
(1)求數列{an}的通項公式;
(2)設Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應的n值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩大超市同時開業(yè),第一年的全年銷售額均為a萬元,由于經營方式不同,甲超市前n年的總銷售額為(n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)設甲、乙兩超市第n年的銷售額分別為an、bn,求an、bn的表達式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現在第幾年?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}的前n項和為Sn,且Sn=2an-1;數列{bn}滿足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求數列{an},{bn}的通項公式;
(2)求數列的前n項和Tn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com