13.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(-2,k),若($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,則k=( 。
A.-8B.-$\frac{1}{2}$C.$\frac{1}{2}$D.8

分析 求出向量$\overrightarrow{a}$+2$\overrightarrow$,利用斜率的坐標(biāo)運(yùn)算求解即可.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(-2,k),
$\overrightarrow{a}$+2$\overrightarrow$=(1,4),
∵($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,
∴-8=k.
故選:A.

點(diǎn)評 本題考查向量的坐標(biāo)運(yùn)算,共線向量的充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)點(diǎn)$P(m,\sqrt{2})$是角α終邊上一點(diǎn),若$cosα=\frac{{\sqrt{2}}}{2}$,則m=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.直線Ln:y=x-$\sqrt{2n}$與圓Cn:x2+y2=2an+n交于不同的兩點(diǎn)An,Bn.?dāng)?shù)列{an}滿足:a1=1,a n+1=$\frac{1}{4}$|AnBn|2
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)若bn=$\left\{\begin{array}{l}{2n-1(n為奇數(shù))}\\{{a}_{n}(n為偶數(shù))}\end{array}\right.$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列能表示函數(shù)圖象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知奇函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且f(2)=0,則不等式x•f(x)<0的取值范圍是{x|x>2,或x<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C所對邊的長分別是a,b,c,已知b=$\sqrt{2}$c,sinA+sinC=$\sqrt{2}$sinB,則角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知log${\;}_{\frac{1}{2}}$a<log${\;}_{\frac{1}{2}}$b,則下列不等式一定成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.${({\frac{1}{3}})^a}>{({\frac{1}{3}})^b}$C.ln(a-b)>0D.3a-b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若α是第三象限角,化簡$\sqrt{\frac{1+cosα}{1-cosα}}$$+\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.方程x+x-1-2=log3x的實(shí)數(shù)解的個(gè)數(shù)是2.

查看答案和解析>>

同步練習(xí)冊答案