設(shè)F1,F(xiàn)2分別是C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn),M是C上一點(diǎn)且MF2與x軸垂直,直線MF1與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為
3
4
,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.
考點(diǎn):橢圓的應(yīng)用
專題:圓錐曲線中的最值與范圍問題
分析:(1)根據(jù)條件求出M的坐標(biāo),利用直線MN的斜率為
3
4
,建立關(guān)于a,c的方程即可求C的離心率;
(2)根據(jù)直線MN在y軸上的截距為2,以及|MN|=5|F1N|,建立方程組關(guān)系,求出N的坐標(biāo),代入橢圓方程即可得到結(jié)論.
解答: 解:(1)∵M(jìn)是C上一點(diǎn)且MF2與x軸垂直,
∴M的橫坐標(biāo)為c,當(dāng)x=c時(shí),y=
b2
a
,即M(c,
b2
a
),
若直線MN的斜率為
3
4
,
即tan∠MF1F2=
b2
a
2c
=
b2
2ac
=
3
4
,
即b2=
3
2
ac
=a2-c2,
即c2+
3
2
ac
-a2=0,
e2+
3
2
e-1=0
,
即2e2+3e-2=0
解得e=
1
2
或e=-2(舍去),
即e=
1
2

(Ⅱ)由題意,原點(diǎn)O是F1F2的中點(diǎn),則直線MF1與y軸的交點(diǎn)D(0,2)是線段MF1的中點(diǎn),
設(shè)M(c,y),(y>0),
c2
a2
+
y2
b2
=1
,即y2=
b4
a2
,解得y=
b2
a
,
∵OD是△MF1F2的中位線,
b2
a
=4,即b2=4a,
由|MN|=5|F1N|,
則|MF1|=4|F1N|,
解得|DF1|=2|F1N|,
DF1
=2
F1N

設(shè)N(x1,y1),由題意知y1<0,
則(-c,-2)=2(x1+c,y1).
2(x1+c)=-c
2y1=-2
,即
x1=-
3
2
c
y1=-1

代入橢圓方程得
9c2
4a2
+
1
b2
=1
,
將b2=4a代入得
9(a2-4a)
4a2
+
1
4a
=1
,
解得a=7,b=2
7
點(diǎn)評:本題主要考查橢圓的性質(zhì),利用條件建立方程組,利用待定系數(shù)法是解決本題的關(guān)鍵,綜合性較強(qiáng),運(yùn)算量較大,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為(  )
A、
81π
4
B、16π
C、9π
D、
27π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某保險(xiǎn)公司利用簡單隨機(jī)抽樣方法,對投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元)01000200030004000
車輛數(shù)(輛)500130100150120
(Ⅰ)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率;
(Ⅱ)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)世行2013年新標(biāo)準(zhǔn),人均GDP低于1035美元為低收入國家;人均GDP為1035-4085美元為中等偏下收入國家;人均GDP為4085-12616美元為中等偏上收入國家;人均GDP不低于12616美元為高收入國家.某城市有5個(gè)行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:
行政區(qū)區(qū)人口占城市人口比例區(qū)人均GDP(單位:美元)
A25%8000
B30%4000
C15%6000
D10%3000
E20%10000
(Ⅰ)判斷該城市人均GDP是否達(dá)到中等偏上收入國家標(biāo)準(zhǔn);
(Ⅱ)現(xiàn)從該城市5個(gè)行政區(qū)中隨機(jī)抽取2個(gè),求抽到的2個(gè)行政區(qū)人均GDP都達(dá)到中等偏上收入國家標(biāo)準(zhǔn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是正方體ABCD-A1B1C1D1棱A1D1上一點(diǎn),設(shè)點(diǎn)P和直線AC1確定的平面為α,過點(diǎn)P與直線AC1垂直的平面為β,則下列命題正確的是
 

①存在平面α,使得A1B∥α;
②對任意平面α都有α⊥β;
③平面α將正方體分割為體積相等的兩部分;
④β截正方體所得截面多邊形可能是四邊形.

查看答案和解析>>

同步練習(xí)冊答案