已知正數(shù)x,y滿足3x+4y=xy,則x+3y的最小值為
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由正數(shù)x,y滿足3x+4y=xy,可得
3
y
+
4
x
=1
.利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答: 解:由正數(shù)x,y滿足3x+4y=xy,∴
3
y
+
4
x
=1

∴x+3y=(x+3y)(
4
x
+
3
y
)
=13+
12y
x
+
3x
y
≥13+2
12y
x
×
3x
y
=25,當(dāng)且僅當(dāng)x=2y=10時(shí),取等號(hào).
∴x+3y的最小值為25.
故答案為:25.
點(diǎn)評(píng):本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是兩個(gè)不同的平面,則下列四個(gè)命題中真命題是:
 

①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若α⊥γ,β⊥γ,則α⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1+x
1-x
,x1,x2∈(-1,1).
(1)求證:f(x1)+f(x2)=f(
x1+x2
1+x1x2
);
(2)若a,b∈(-1,1),且f(
a+b
1+ab
)=1,f(-b)=
1
2
,求f(a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x,x∈[1,5),則此函數(shù)的值域?yàn)椋ā 。?/div>
A、[-4,+∞)
B、[-3,5)
C、[-4,5]
D、[-4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
f(x+3),x<6
log
1
2
x,x≥6
,則f(-1)的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<3或x>8}.
(1)當(dāng)a=2時(shí),求∁R(A∩B),(∁RA)∪B.
(2)若集合A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3-bx+2,且f(-5)=17,則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有集合A={x|x2-[x]=2}和B={x||x|<2},求A∩B和A∪B(其中[x]表示不超過實(shí)數(shù)x之值的最大整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在海岸線EF一側(cè)有一休閑游樂場(chǎng),游樂場(chǎng)的前一部分邊界為曲線段FGBC,該曲線段是函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[-4,0]的圖象,圖象的最高點(diǎn)為B(-1,2).邊界的中間部分為長(zhǎng)1千米的直線段CD,且CD∥EF.游樂場(chǎng)的后一部分邊界是以O(shè)為圓心的一段圓弧
DE

(1)求曲線段FGBC的函數(shù)表達(dá)式;
(2)曲線段FGBC上的入口G距海岸線EF最近距離為1千米,現(xiàn)準(zhǔn)備從入口G修一條筆直的景觀路到O,求景觀路GO長(zhǎng);
(3)如圖,在扇形ODE區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū)OMPQ,平行四邊形的一邊在海岸線EF上,一邊在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧
DE
上,且∠POE=θ,求平行四邊形休閑區(qū)OMPQ面積的最大值及此時(shí)θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案