已知直線l的參數(shù)方程為:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cosθ,則圓C的圓心到直線l的距離為
 
考點(diǎn):直線的參數(shù)方程,簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把直線l的參數(shù)方程和圓C的極坐標(biāo)方程分別化為直角坐標(biāo)方程,再利用點(diǎn)到直線的距離公式即可得出.
解答: 解:由直線l的參數(shù)方程為:
x=2t
y=1+4t
(t為參數(shù)),消去參數(shù)t得到y(tǒng)=2x+1.
由圓C的極坐標(biāo)方程為ρ=2cosθ,
∴ρ2=2ρcosθ,化為x2+y2=2x,得到(x-1)2+y2=1,得到圓心(1,0),半徑r=1.
∴圓C的圓心到直線l的距離d=
|2-0+1|
22+(-1)2
=
3
5
5

故答案為:
3
5
5
點(diǎn)評(píng):本題可查了查把參數(shù)方程和極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為2的菱形ABCD中,∠ABC=60°,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.

(1)求證:A′D⊥EF;
(2)求二面角A′-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,F(xiàn)D的延長(zhǎng)線交AC的延長(zhǎng)線于H,求證:DF2=FG•FH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知b2=a(a+b),cos(A-B)+cosC=1-cos2C,試求
a+c
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A,B,C為不在同一直線上的三點(diǎn),且AA1∥BB1∥CC1,AA1=BB1=CC1
(1)求證:平面ABC∥平面A1B1C1
(2)若AA1⊥平面ABC,且AC=AA1=4,BC=3,AB=5,求證:A1C丄平面AB1C1
(3)在(2)的條件下,求二面角C1-AB1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一彈簧在彈性限度內(nèi),拉伸彈簧所用的力與彈簧伸長(zhǎng)的長(zhǎng)度成正比.如果20N的力能使彈簧伸長(zhǎng)3cm,則把彈簧從平衡位置拉長(zhǎng)6cm(在彈性限度內(nèi))時(shí)所做的功為
 
.(單位:焦耳)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>b>0)右支上一點(diǎn)P到左焦點(diǎn)的距離是到右準(zhǔn)線距離的6倍,則該雙曲線離心率的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在
x2
25
-
y2
144
=1上,若|PF1|=16,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是雙曲線
x2
a2
-
y2
9
=1
上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若|PF1|=3,則|PF2|的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案