設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點(diǎn),求a的取值范圍;
(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.
解:(Ⅰ)∵(x)=3x2+2ax-a2=3(x-)(x+a), 又a>0,∴當(dāng)x<-a或x>時(x)>0; 當(dāng)-a<x<時,(x)<0. ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-a),(,+∞),單調(diào)遞減區(qū)間為(-a,).(4分) (Ⅱ)由題設(shè)可知,方程(x)=3x2+2ax-a2=0在[-1,1]上沒有實根 ∴,解得a>3 (8分) (Ⅲ)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3 又x∈[-2,2] ∴f(x)max=max{f(-2),f(2)} 而f(2)-f(-2)=16-4a2<0 ∴f(x)max=f(-2)=-8+4a+2a2+m (10分) 又∵f(x)≤1在[-2,2]上恒成立 ∴f(x)max≤1即-8+4a+2a2+m≤1 即m≤9-4a-2a2,在a∈[3,6]上恒成立 ∵9-4a-2a2的最小值為-87 ∴m≤-87 (13分) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題
已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3-x2+a x.
(Ⅰ) 當(dāng)a=2時,求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于或等于10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江瑞安瑞祥高級中學(xué)高二下學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個不同實根,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第二次月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象在處的切線方程為12x+y-1=0.
⑴求a,b的值;
⑵求函數(shù)f(x)在閉區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:解答題
(12分)設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行。求:
(1)a的值;
(2)函數(shù)y=f (x) 的單調(diào)區(qū)間;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com