設(shè)函數(shù)f(x)=x3ax2a2xm(a>0).

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點(diǎn),求a的取值范圍;

(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.

答案:
解析:

  解:(Ⅰ)∵(x)=3x2+2axa2=3(x)(xa),

  又a>0,∴當(dāng)x<-ax(x)>0;

  當(dāng)-ax時,(x)<0.

  ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-a),(,+∞),單調(diào)遞減區(qū)間為(-a,).(4分)

  (Ⅱ)由題設(shè)可知,方程(x)=3x2+2axa2=0在[-1,1]上沒有實根

  ∴,解得a>3  (8分)

  (Ⅲ)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3

  又x∈[-2,2]

  ∴f(x)max=max{f(-2),f(2)}

  而f(2)-f(-2)=16-4a2<0

  ∴f(x)maxf(-2)=-8+4a+2a2m  (10分)

  又∵f(x)≤1在[-2,2]上恒成立

  ∴f(x)max≤1即-8+4a+2a2m≤1

  即m≤9-4a-2a2,在a∈[3,6]上恒成立

  ∵9-4a-2a2的最小值為-87

  ∴m≤-87  (13分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題

 已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.

(Ⅰ) 當(dāng)a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,

求證:g(x)的極大值小于或等于10.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,則

A.x1>-1           B.x2<0             C.x2>0             D.x3>2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江瑞安瑞祥高級中學(xué)高二下學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x3-12x+5,x∈R.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

(2)若關(guān)于x的方程f(x)=a有三個不同實根,求實數(shù)a的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第二次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象在處的切線方程為12x+y-1=0.

⑴求a,b的值;

⑵求函數(shù)f(x)在閉區(qū)間上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:解答題

(12分)設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行。求:

(1)a的值;

(2)函數(shù)y=f (x) 的單調(diào)區(qū)間;

 

查看答案和解析>>

同步練習(xí)冊答案