設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
(1)f(x)的單調(diào)遞增區(qū)間為(-∞,-2)和(2,+∞);單調(diào)減區(qū)間為(-2,2)當(dāng)x=-2時(shí),f(x)有極大值21;當(dāng)x=2時(shí),f(x)有極小值-11.
(2)
【解析】
試題分析:解:(1)f′(x)=3x2-12,令f′(x)=0,解得x1=-2,x2=2. 2分
因?yàn)楫?dāng)x>2或x<-2時(shí),f′(x)>0;當(dāng)-2<x<2時(shí),f′(x)<0.
所以f(x)的單調(diào)遞增區(qū)間為(-∞,-2)和(2,+∞);單調(diào)減區(qū)間為(-2,2). 3分
當(dāng)x=-2時(shí),f(x)有極大值21;當(dāng)x=2時(shí),f(x)有極小值-11. 2分
(2)由(1)的分析知y=f(x)的圖象的大致形狀及走向,當(dāng)-11<a<21時(shí),直線y=a與y=f(x)的
圖象有三個(gè)不同交點(diǎn),即方程f(x)=a有三個(gè)不同的解. 2分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中單調(diào)性和極值的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題
已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3-x2+a x.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于或等于10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第二次月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象在處的切線方程為12x+y-1=0.
⑴求a,b的值;
⑵求函數(shù)f(x)在閉區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測(cè)數(shù)學(xué)文卷 題型:解答題
(12分)設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行。求:
(1)a的值;
(2)函數(shù)y=f (x) 的單調(diào)區(qū)間;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com