若Sn表示等差數(shù)列{an}的前n項和,且a12=3,S13=26,則S18=
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由a12=3,S13=26,求出a1=
4
5
,d=
1
5
,再利用S18=18a1+153d,即可得出結(jié)論.
解答: 解:由題意,∵a12=3,S13=26,
∴a1+11d=3,13a1+78d=26,
∴a1=
4
5
,d=
1
5
,
∴S18=18a1+153d=45.
故答案為:45.
點評:本題考查等差數(shù)列的通項與求和,考查學(xué)生的計算能力,確定a1=
4
5
,d=
1
5
是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x>0,總有(x+1)ex>1,則¬p為( 。
A、?x0≤0,使得(x0+1)e x0≤1
B、?x0>0,使得(x0+1)e x0≤1
C、?x>0,總有(x+1)ex≤1
D、?x≤0,總有(x+1)ex≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各結(jié)論中:
①拋物線y=
1
4
x2的焦點到直線y=x-1的距離為
2
;
②已知函數(shù)f(x)=xα的圖象經(jīng)過點(2,
2
2
),則f(4)的值等于
1
2

③命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0.
正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a+b+c=1,求證:ab+bc+ca≤
1
3

(2)已知a>0,求證:
a2+
1
a2
-
2
≥a+
1
a
-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,a1=3,且3S1,2S2,S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3an,求Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f(x+2)+2,x<3
2x ,x≥3
,則f(log23)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①函數(shù)y=|sin(2x-
π
3
)|的最小正周期為π.
②在△ABC中,若A>B,則cos2A<cos2B.
③若0<α<β<γ<2π,且cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0,則γ-α等于
3
3

④若角α,β滿足cosα•cosβ=1,則sin(α+β)=0.
⑤若0<x<
π
4
,則sin(sinx)<sinx<sin(tanx).
⑥在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,則C=30°.
則真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=1+i,z2=2i,則
z2
z1
=(  )
A、-1+iB、1+i
C、-2+2iD、2+2i

查看答案和解析>>

同步練習(xí)冊答案