下列函數(shù)中,在(0,+∞)上為增函數(shù)的是( 。
A、y=(x-1)2
B、y=x2
C、y=(
1
2
x
D、y=
3
x
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)基本初等函數(shù)的單調(diào)性,判定A、B、C、D選項中函數(shù)的單調(diào)性即得.
解答: 解:A中,y=(x-1)2在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
B中,y=x2在(-∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù);
C中,y=(
1
2
)
x
在(-∞,+∞)上是減函數(shù);
D中,y=
3
x
在(-∞,0)和(0,+∞)上是減函數(shù).
故選:B.
點評:本題考查了基本初等函數(shù)的單調(diào)性問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的奇函數(shù),對x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,則f(2014)等于( 。
A、2014B、2C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運算:對x、y∈R,有x⊕y=2x+y,如果a⊕(3b)=1,(ab>0),則
1
a
⊕(
1
3b
)
的最小值是(  )
A、4
B、
32
3
C、9
D、
28
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在(-1,1)上有定義,f(
1
2
)=1
,且滿足x,y∈(-1,1)時有f(x)-f(y)=f(
x-y
1-xy
)
,數(shù)列{xn}滿足x1=
1
2
,xn+1=
2xn
1+xn2

(1)求f(0)的值,并證明f(x)在(-1,1)上為奇函數(shù);
(2)探索f(xn+1)與f(xn)的關(guān)系式,并求f(xn)的表達式;
(3)是否存在自然數(shù)m,使得對于任意的n∈N*,
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
m-8
4
恒成立?若存在,求出m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

流程如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(  )
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=lnx+2x-6
D、f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2mx+4n2(m∈R,n∈R).
(Ⅰ)若m從集合{0,1,2,3}中任取一個元素,n從集合{0,1,2,4}中任取一個元素,求方程f(x)=0有兩個不相等實數(shù)根的概率;
(Ⅱ)若m從區(qū)間[0,4]中任取一個數(shù),n從區(qū)間[0,6]中任取一個數(shù),求方程f(x)=0沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0
(1)若a是從0,1,2,3四個數(shù)中任意取一個數(shù),b是從0,1,2三個數(shù)中任意取一個,求上述方程有實根的概率;
(2)若a∈[0,2],b∈[0,1],求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正方形OABC中任取一點P,則點P恰好落在正方形與曲線y=
x
圍成的區(qū)域內(nèi)(陰影部分)的概率為(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非負實數(shù)a,b滿足a+b≤1,則關(guān)于x的一元二次方程x2+ax+b2=0有實根的概率是( 。
A、
1
3
B、
1
2
C、
1
6
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案