【題目】若sin2α= ,sin(β﹣α)= ,且α∈[ ,π],β∈[π, ],則α+β的值是(
A.
B.
C.
D.

【答案】A
【解析】解:∵α∈[ ,π],β∈[π, ],∴2α∈[ ,2π],
又sin2α= >0,
∴2α∈[ ,π],cos2α=﹣ =﹣ ;
又sin(β﹣α)= ,β﹣α∈[ ,π],
∴cos(β﹣α)=﹣ =﹣ ,
∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣sin2αsin(β﹣α)=﹣ ×(﹣ )﹣ × =
又α∈[ , ],β∈[π, ],
∴(α+β)∈[ ,2π],
∴α+β= ,
故選:A.
【考點精析】通過靈活運用兩角和與差的正弦公式和二倍角的正弦公式,掌握兩角和與差的正弦公式:;二倍角的正弦公式:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差s 和s ,并由此分析兩組技工的加工水平;
(3)質檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質量合格”,求該車間“質量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線的焦點,點是不在拋物線上的一個動點,過點向拋物線作兩條切線,切點分別為.

(1)如果點在直線上,求的值;

(2)若點在以為圓心,半徑為4的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的函數(shù)f(x)滿足:
①對任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②當x<0時,f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)﹣1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集為{a|﹣2<a<4},求f(5)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點,記橢圓的左、右頂點分別為,點是橢圓上異于的點,直線與直線分別交于點.

(1)求橢圓的方程;

(2)過點作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 已知(a4﹣1)3+2016(a4﹣1)=1,(a2013﹣1)3+2016(a2013﹣1)=﹣1,則下列結論正確的是(
A.S2016=﹣2016,a2013>a4
B.S2016=2016,a2013>a4
C.S2016=﹣2016,a2013<a4
D.S2016=2016,a2013<a4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=exax2-e2x.

(1)若曲線yf(x)在點(2,f(2))處的切線平行于x軸,求函數(shù)f(x)的單調區(qū)間;

(2)若x>0時,總有f(x)>-e2x,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(1)=0,當x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,設傾斜角為α的直線: (t為參數(shù))與曲線C: (θ為參數(shù))相交于不同的兩點A,B.
(1)若α= ,求線段AB的長度;
(2)若直線的斜率為 ,且有已知點P(2, ),求證:|PA||PB|=|OP|2

查看答案和解析>>

同步練習冊答案