【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo),直線經(jīng)過點,且傾斜角為.

1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;

2)直線與曲線交于兩點,直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點,求證:.

【答案】1,t為參數(shù));(2)證明見解析.

【解析】

1)利用消參得到曲線的直角坐標(biāo)方程,求點的直角坐標(biāo),再直接寫成直線的標(biāo)準(zhǔn)參數(shù)方程;(2)首先將直線的參數(shù)方程和曲線聯(lián)立,利用參數(shù)的幾何意義可知,同理可得,利用根與系數(shù)的關(guān)系證明.

1)由為參數(shù))消去參數(shù)

得點的直角坐標(biāo)為

∴直線的標(biāo)準(zhǔn)參數(shù)方程為t為參數(shù))

2)將直線的標(biāo)準(zhǔn)參數(shù)方程t為參數(shù))代入

化簡得

設(shè)方程兩根為,則

由直線參數(shù)方程中的幾何意義得

同理將的參數(shù)方程代入的參數(shù)方程可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)學(xué)生的冬奧會知識,弘揚奧林匹克精神,北京市多所中小學(xué)校開展了模擬冬奧會各項比賽的活動.為了了解學(xué)生在越野滑輪和旱地冰壺兩項中的參與情況,在北京市中小學(xué)學(xué)校中隨機(jī)抽取了10所學(xué)校,10所學(xué)校的參與人數(shù)如下:

(Ⅰ)現(xiàn)從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查.求選出的2所學(xué)校參與越野滑輪人數(shù)都超過40人的概率;

(Ⅱ)現(xiàn)有一名旱地冰壺教練在這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行指導(dǎo),記X為教練選中參加旱地冰壺人數(shù)在30人以上的學(xué)校個數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)某校聘請了一名越野滑輪教練,對高山滑降、轉(zhuǎn)彎、八字登坡滑行這3個動作進(jìn)行技術(shù)指導(dǎo).規(guī)定:這3個動作中至少有2個動作達(dá)到優(yōu),總考核記為優(yōu)”.在指導(dǎo)前,該校甲同學(xué)3個動作中每個動作達(dá)到優(yōu)的概率為0.1.在指導(dǎo)后的考核中,甲同學(xué)總考核成績?yōu)?/span>優(yōu)”.能否認(rèn)為甲同學(xué)在指導(dǎo)后總考核達(dá)到優(yōu)的概率發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點在平面上的射影恰好在上.

(Ⅰ)當(dāng)時,證明:平面平面;

(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,兩個坐標(biāo)系取相等的長度單位.已知圓的參數(shù)方程為為參數(shù)),直線的直角坐標(biāo)方程為.

1)求圓的普通方程和直線的極坐標(biāo)方程;

2)設(shè)圓和直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為F,過F的直線與拋物線交于AB兩點,點O為坐標(biāo)原點,則下列命題中正確的個數(shù)為(

面積的最小值為4;

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,,則

④過焦點Fy軸的垂線與直線,分別交于點MN,則以為直徑的圓恒過定點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.

1)求拋物線的方程;

2)求過點且與拋物線的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點個數(shù);

2)若有兩個極值點,試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題隨機(jī)變量服從正態(tài)分布,且,則.現(xiàn)給出四個命題:,,,其中真命題的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,,點,分別為棱的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案