【題目】已知函數(shù)f(x)=x,g(x)=x-4,則下列結(jié)論正確的是( )
A.若h(x)=f(x)g(x),則函數(shù)h(x)的最小值為4
B.若h(x)=f(x)|g(x)|,則函數(shù)h(x)的值域?yàn)?/span>R
C.若h(x)=|f(x)|-|g(x)|,則函數(shù)h(x)有且僅有一個(gè)零點(diǎn)
D.若h(x)=|f(x)|-|g(x)|,則|h(x)|≤4恒成立
【答案】BCD
【解析】
對(duì)選項(xiàng)逐一分析,由此確定結(jié)論正確的選項(xiàng).
對(duì)于A選項(xiàng),,當(dāng)時(shí),函數(shù)的最小值為,所以A選項(xiàng)錯(cuò)誤.
對(duì)于B選項(xiàng),,畫出圖像如下圖所示,由圖可知,的值域?yàn)?/span>,故B選項(xiàng)正確.
對(duì)于C選項(xiàng),,畫出圖像如下圖所示,由圖可知,有唯一零點(diǎn),故C選項(xiàng)正確.
對(duì)于D選項(xiàng),由C選項(xiàng)的分析,結(jié)合圖像可知恒成立,故D選項(xiàng)正確.
故選:BCD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過(guò)點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓與的離心率均為.
(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時(shí),求兩直線MA,MB斜率的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批產(chǎn)品的內(nèi)徑進(jìn)行抽查,已知被抽查的產(chǎn)品的數(shù)量為200,所得內(nèi)徑大小統(tǒng)計(jì)如表所示:
(Ⅰ)以頻率估計(jì)概率,若從所有的這批產(chǎn)品中隨機(jī)抽取3個(gè),記內(nèi)徑在的產(chǎn)品個(gè)數(shù)為X,X的分布列及數(shù)學(xué)期望;
(Ⅱ)已知被抽查的產(chǎn)品是由甲、乙兩類機(jī)器生產(chǎn),根據(jù)如下表所示的相關(guān)統(tǒng)計(jì)數(shù)據(jù),是否有的把握認(rèn)為生產(chǎn)產(chǎn)品的機(jī)器種類與產(chǎn)品的內(nèi)徑大小具有相關(guān)性.
參考公式:,(其中為樣本容量).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為a的菱形ABCD中,,E,F分別是PA和AB的中點(diǎn).
(1)求證: EF||平面PBC;
(2)求E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng) 時(shí),求曲線 在點(diǎn) 處的切線方程;
(2)求 的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中“sinA>sinB”是“cosA<cosB”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
⑴求的解析式;
⑵求時(shí),的值域;
⑶設(shè),若對(duì)任意的,總有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com