【題目】在線段的兩端點各置一個光源,已知光源,的發(fā)光強度之比為,則線段上光照度最小的一點到,的距離之比為______(光學定律:點的光照度與到光源的距離的平方成反比,與光源的發(fā)光強度成正比)

【答案】

【解析】

設(shè)線段長為L,線段上光照度最小的一點P,的距離分別為,不妨設(shè)光源的發(fā)光強度之比為1,2,由題意可得P點受光源的照度為:,P點受光源的照度為:,作和后利用導(dǎo)數(shù)求最值,可得P,的距離,作比得答案.

解:設(shè)線段長為L,線段上光照度最小的一點P,的距離分別為,不妨設(shè),光源的發(fā)光強度為1,2
∵光照度與光的強度成正比,設(shè)比例系數(shù)為,

與光源距離的平方成反比,設(shè)比例系數(shù)為,
P點受光源的照度為:
P點受光源的照度為:,
P點受到兩光源的總照度,


,
,解得:,
時,,函數(shù)上遞減,
時,,函數(shù)上遞增,
故當時,取極小值,且是最小值,
P在線段上距離時,P點的光照度最小,
此時點P到的距離之比為
故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋內(nèi)裝有大小相同的5個球,其中3個白球,2個黑球,從中一次摸出兩個球.

1)共有多少個基本事件?

2)摸出的兩個都是白球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),如果對于定義域內(nèi)的任意實數(shù),對于給定的非零常數(shù),總存在非零常數(shù),恒有成立,則稱函數(shù)上的級類增周期函數(shù),周期為,若恒有成立,則稱函數(shù)上的級類周期函數(shù),周期為.

1)已知函數(shù)上的周期為12級類增周期函數(shù),求實數(shù)的取值范圍;

2)已知,級類周期函數(shù),且上的單調(diào)遞增函數(shù),當時,,求實數(shù)的取值范圍;

3)是否存在實數(shù),使函數(shù)上的周期為級類周期函數(shù),若存在,求出實數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△的三個內(nèi)角、所對應(yīng)的邊分別為、,復(fù)數(shù),(其中是虛數(shù)單位),且.

(1)求證:,并求邊長的值;

(2)判斷△的形狀,并求當時,角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩條相交線段、的四個端點都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,,求的值;

(2)探究:是否存在常數(shù),當變化時,恒有?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程是為參數(shù)),把曲線C的橫坐標縮短為原來的,縱坐標縮短為原來的一半,得到曲線直線l的普通方程是,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求直線l的極坐標方程和曲線的普通方程;

2)記射線)與交于點A,與l交于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點在線段上,且, , 平面.

1)求證:平面平面

2)當四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的在數(shù)集上都有定義,對于任意的,當時,成立,則稱是數(shù)集的限制函數(shù).

(1)求上的限制函數(shù)的解析式;

(2)證明:如果在區(qū)間上恒為正值,則上是增函數(shù);[注:如果在區(qū)間上恒為負值,則在區(qū)間上是減函數(shù),此結(jié)論無需證明,可以直接應(yīng)用]

(3)利用(2)的結(jié)論,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,直線軸的交點為P,與C的交點為Q,且F的直線C相交于A、B兩點.

(1)求C的方程;

(2)設(shè)點的面積為求直線的方程;

(3)若線段AB的垂直平分線與C相交于M、N兩點,且A、MB、N四點在同一圓上,求直線的方程.

查看答案和解析>>

同步練習冊答案