【題目】已知函數(shù), .
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
【答案】(1) ;(2) .
【解析】試題分析:(1)利用正弦函數(shù)的兩角和與差的公式、二倍角的余弦公式與輔助角公式將化為,利用周期公式即可求得函數(shù)的最小正周期;(2)可分析得到函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),從而可求得在區(qū)間上的最大值和最小值.
試題解析:(1)f(x)=sin 2x·cos+cos 2x·sin+sin 2x·cos-cos 2x·sin+cos 2x
=sin 2x+cos 2x=sin.
所以,f(x)的最小正周期T==π.
(2)因為f(x)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
又,
故函數(shù)f(x)在區(qū)間上的最大值為,最小值為-1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x+y)=f(x)+f(y)且f(1)=2,則f(1)+f(2)+…+f(n)不能等于( )
A.f(1)+2f(1)+…+nf(1)
B.f( )
C.n(n+1)
D.n(n+1)f(1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三某班的一次測試成績的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請根據(jù)此解答如下問題:
(1)求班級的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.
分組 | 頻數(shù) | 頻率 |
[50,60) | 0.08 | |
[60,70) | 7 | |
[70,80) | 10 | |
[80,90) | ||
[90,100) | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<π),在同一周期內(nèi),當(dāng) 時,f(x)取得最大值3;當(dāng) 時,f(x)取得最小值﹣3.
(1)求函數(shù)f(x)的解析式和圖象的對稱中心;
(2)若 時,關(guān)于x的方程2f(x)+1﹣m=0有且僅有一個實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式在上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若,求證不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時,甲射擊了兩次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+…+f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com