【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式在上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,求證不等式.
【答案】(1) g(x)的增區(qū)間,減區(qū)間;(2) ;(3)見解析.
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的正負(fù)情況研究函數(shù)的單調(diào)性;(2)恒成立求參轉(zhuǎn)化為 恒成立,求到研究函數(shù)單調(diào)性和最值;(3)轉(zhuǎn)化為在上恒成立。通過(guò)求導(dǎo)研究函數(shù)單調(diào)性,求得函數(shù)最值。
(Ⅰ)g(x)的定義域?yàn)?/span> , , 當(dāng)時(shí), 在上恒成立
所以g(x)的增區(qū)間,無(wú)減區(qū)間當(dāng)時(shí),令得
令得所以g(x)的增區(qū)間,減區(qū)間 .
(Ⅱ) 即在上恒成立
設(shè),考慮到
,在上為增函數(shù), ,
當(dāng)時(shí), , 在上為增函數(shù), 恒成立
當(dāng)時(shí), , 在上為增函數(shù)
,在上, , 遞減,
,這時(shí)不合題意, 綜上所述,
(Ⅲ)要證明在上,
只需證明 ,由(Ⅱ)當(dāng)a =0時(shí),在上, 恒成立, 再令, 在上, , 遞增,所以 即,相加,得,所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對(duì)任意實(shí)數(shù)x∈[5,9],f(x)≤ax﹣1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3sin(ωx+) 的部分圖象如圖所示,A,B兩點(diǎn)之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長(zhǎng)度后所得函數(shù)圖象關(guān)于y軸對(duì)稱,則t的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長(zhǎng)分別為2 ,4 ,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動(dòng)點(diǎn)P在圓C內(nèi)且P的坐標(biāo)滿足關(guān)系式(x﹣1)2﹣y2= ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對(duì)稱點(diǎn).
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x﹣a必有局部對(duì)稱點(diǎn);
(2)若函數(shù)f(x)=2x+b在區(qū)間[﹣1,1]內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 經(jīng)過(guò)點(diǎn)P(2,1),且離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過(guò)定點(diǎn),如果經(jīng)過(guò)定點(diǎn)請(qǐng)求出定點(diǎn)的坐標(biāo),如果不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com