分析:(Ⅰ)把a(bǔ)的值代入函數(shù)解析式,然后求函數(shù)的導(dǎo)函數(shù),求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)把定義域分段,根據(jù)導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)求出原函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求出原函數(shù)的導(dǎo)函數(shù),根據(jù)a的不同取值范圍對(duì)導(dǎo)函數(shù)的符號(hào)加以判斷,只有當(dāng)a≥
時(shí),f′(x)=(2a-1)x+(x-lnx-1)>0,f(x)是增函數(shù),此時(shí)f(x)≥f(1)=0,不等式恒成立.對(duì)于0<a<
和a≤0都不能滿足當(dāng)x≥1時(shí),f(x)≥0恒成立,從而求得a的范圍.
解答:解:(Ⅰ)當(dāng)
a=時(shí),
f(x)=(x2-1)-xlnx,所以f′(x)=x-lnx-1.
函數(shù)f(x)的定義域?yàn)椋?,+∞).
設(shè)g(x)=x-lnx-1,則g′(x)=1-
.
令g′(x)=0,得x=1.
當(dāng)x∈(0,1)時(shí),g′(x)<0,函數(shù)g(x)是減函數(shù);
當(dāng)x∈(1,+∞)時(shí),g′(x)>0,函數(shù)g(x)是增函數(shù).
函數(shù)g(x)的最小值為g(1)=0.
所以g(x)=f′(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),f(x)在(0,+∞)是增函數(shù).
(Ⅱ)由函數(shù)f(x)=a(x
2-1)-xlnx,則f′(x)=2ax-lnx-1.
(1)若a≥
,則由(Ⅰ)知,f′(x)=(2a-1)x+(x-lnx-1)>0,f(x)是增函數(shù),
此時(shí)f(x)≥f(1)=0,不等式恒成立.
(2)若0<a<
,設(shè)h(x)=2ax-lnx-1,h′(x)=2a-
.
當(dāng)x∈(1,
)時(shí),h′(x)<0,函數(shù)h(x)是減函數(shù).
則f′(x)=h(x)<h(1)=2a-1<0,f(x)在(1,
)是減函數(shù).
這時(shí)f(x)<f(1)=0,不等式不成立.
(3)若a≤0時(shí),則當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)在(1,+∞)是減函數(shù),
此時(shí)f(x)<f(1)=0,不等式不成立.
綜上所述,a的取值范圍是[
,+∞).