【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

【答案】C

【解析】A項,是等差數(shù)列,,,所以數(shù)列單調(diào)遞增,錯誤;因為等差數(shù)列的圖象為一次函數(shù)上孤立的點,而等比數(shù)列為指數(shù)函數(shù)上孤立的點,且由題意兩個函數(shù)分別單調(diào)遞增,故畫出相對應(yīng)的函數(shù)圖象,一條直線與一條下凸的曲線,在自變量n取1和2017時有交點,因此在時,,時,,所以B,D錯誤,C正確,故選C.

點睛:本題考查等差、等比數(shù)列的函數(shù)特點以及基本不等式的應(yīng)用的綜合問題,屬于中檔題目. 等差數(shù)列的判斷方法:(1)定義法:對于n≥2的任意自然數(shù),驗證anan-1為同一常數(shù);(2)等差中項法:驗證2an-1anan-2(n≥3,n∈N*)都成立;(3)通項公式法:驗證anpnq;

(4)前n項和公式法:驗證SnAn2Bn.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為評選“全國衛(wèi)生城市”,從200名志愿者中隨機(jī)抽取40名志愿者參加街道衛(wèi)生監(jiān)督活動,經(jīng)過統(tǒng)計這些志愿者的年齡介于25歲和55歲之間,為方便安排任務(wù),將所有志愿者按年齡從小到大分成六組,依次為,如圖是按照上述分組方法得到的頻率分布直方圖的一部分,已知第四組的人數(shù)為4人.

(1)求第五組的頻率并估計200名志愿者中年齡在40歲以上(含40歲)的人數(shù);

(2)若從年齡位于第四組和第六組的志愿者中隨機(jī)抽取兩名,記他們的年齡分別為,事件,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當(dāng)初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖,計算圖中各小長方形的寬度;

(Ⅱ)根據(jù)頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(Ⅲ)按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:百萬元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面 , , ,平面平面

(Ⅰ)求證: ;

(Ⅱ)若為棱的中點,求證: 平面;

(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,與軸不重合的直線經(jīng)過左焦點,且與橢圓相交于 兩點,弦的中點為,直線與橢圓相交于, 兩點.

(Ⅰ)若直線的斜率為1,求直線的斜率;

(Ⅱ)是否存在直線,使得成立?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)當(dāng)a=1時,求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]時恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下關(guān)于命題的說法正確的有(選擇所有正確命題的序號).

(1)“若,則函數(shù)在其定義域內(nèi)是減函數(shù)”是真命題;

(2)命題“若,則”的否命題是“若,則”;

(3)命題“若都是偶函數(shù),則也是偶數(shù)”的逆命題為真命題;

(4)命題“若,則”與命題“若,則”等價.

A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在直線上,且與直線相切于點.

1求圓方程;

2是否存在過點的直線與圓交于兩點,且的面積是為坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案