直線l與橢圓=1交于P、Q兩點(diǎn),已知l的斜率為1,則弦PQ的中點(diǎn)軌跡方程為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2010-2011學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
設(shè)直線l:y=kx+m(其中k,m為整數(shù))與橢圓=1交于不同兩點(diǎn)A,B,與雙曲線=1交于不同兩點(diǎn)C,D,問(wèn)是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009屆寧夏省期末數(shù)學(xué)模擬試題分類匯編(直線與圓) 題型:044
已知圓O:x2+y2=1,點(diǎn)O為坐標(biāo)原點(diǎn),一條直線l:y=kx+b(b>0)與圓O相切并與橢圓=1交于不同的兩點(diǎn)A、B
(1)設(shè)b=f(k),求f(k)的表達(dá)式;
(2)若,求直線l的方程;
(3)若,求三角形OAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)已知直線x-2y+2=0經(jīng)過(guò)橢圓C:=1(>>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方
的動(dòng)點(diǎn),直線AS、BS與直線l:x=分別交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值;
(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線x-2y+2=0經(jīng)過(guò)橢圓C:+=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值;
(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com