已知直線x-2y+2=0經(jīng)過(guò)橢圓C:+=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值;
(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由.
(1)由題知A(-2,0),D(0,1),故a=2,b=1,所以橢圓方程為:+y2=1.
(2)設(shè)直線AS的方程為y=k(x+2)(k>0),從而可知M點(diǎn)的坐標(biāo)為(,).
由得S(,),
所以可得BS的方程為y=-(x-2),從而可知N點(diǎn)的坐標(biāo)(,-),
∴|MN|=+≥當(dāng)且僅當(dāng)k=時(shí)等號(hào)成立,
故當(dāng)k=時(shí),線段MN的長(zhǎng)度取最小值.
(3)由(2)知,當(dāng)|MN|取最小值時(shí),k=,此時(shí)直線BS的方程為x+y-2=0,S(,),∴|BS|=.要使橢圓C上存在點(diǎn)T,使得△TSB的面積等于,只需T到直線BS的距離等于,所以點(diǎn)T在平行于直線BS且與直線BS的距離等于的直線l′上.直線BS:x+y-2=0;直線l′:x+y+m=0,得m=-或m=-,
則直線l′:x+y-=0或x+y-=0,
,消去y得5x2-20x+21=0,Δ<0無(wú)解;
,消去y得5x2-12x+5=0,Δ=44>0,有兩個(gè)解,
所以點(diǎn)T有兩個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2011-2012學(xué)年高二上學(xué)期期末數(shù)學(xué)理科試題 題型:044
已知直線x-2y+2=0經(jīng)過(guò)橢圓C:+=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求證:直線AS與直線BS斜率的乘積為定值;
(3)求線段MN的長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)文科(福建卷) 題型:044
已知直線
x-2y+2=0經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S和橢圓C上位于x軸上方的動(dòng)點(diǎn),直線,AS,BS與直線分別交于M,N兩點(diǎn).(Ⅰ)求橢圓C的方程;
(Ⅱ)求線段MN的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線x+2y=2與x軸、y軸分別相交于A、B兩點(diǎn),若動(dòng)點(diǎn)P(a,b)在線段AB上,則ab的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)已知直線x-2y+2=0經(jīng)過(guò)橢圓C:=1(>>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方
的動(dòng)點(diǎn),直線AS、BS與直線l:x=分別交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值;
(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com